Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

High BRE expression in pediatric MLL-rearranged AML is associated with favorable outcome

Abstract

Translocations involving the mixed lineage leukemia (MLL) gene, localized at 11q23, frequently occur in pediatric acute myeloid leukemia (AML). We recently reported differences in prognosis between the different translocation partners, suggesting differences in biological background. To unravel the latter, we used microarrays to generate gene expression profiles of 245 pediatric AML cases, including 53 MLL-rearranged cases. Thereby, we identified a specific gene expression signature for t(9;11)(p22;q23), and identified BRE (brain and reproductive organ expressed) to be discriminative for t(9;11)(p22;q23) (P<0.001) when compared with other MLL subtypes. Patients with high BRE expression showed a significantly better 3-year relapse-free survival (pRFS) (80±13 vs 30±10%, P=0.02) within MLL-rearranged AML cases. Moreover, multivariate analysis identified high BRE expression as an independent favorable prognostic factor within pediatric AML for RFS (HR=0.2, P=0.04). No significant differences were identified for 3-year event-free survival or for 3-year overall survival. Forced expression of BRE did not result in altered cell proliferation, apoptosis or drug sensitivity, which could explain the favorable outcome. In conclusion, overexpression of the BRE gene is predominantly found in MLL-rearranged AML with t(9;11)(p22;q23). Although further investigation for the role of BRE in leukemogenesis and outcome is warranted, high BRE expression is an independent prognostic factor for pRFS in pediatric AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kaspers GJ, Zwaan CM . Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica 2007; 92: 1519–1532.

    Article  Google Scholar 

  2. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009; 23: 1490–1499.

    Article  CAS  Google Scholar 

  3. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  Google Scholar 

  4. Raimondi SC, Chang MN, Ravindranath Y, Behm FG, Gresik MV, Steuber CP et al. Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative pediatric oncology group study-POG 8821. Blood 1999; 94: 3707–3716.

    CAS  Google Scholar 

  5. Swansbury GJ, Slater R, Bain BJ, Moorman AV, Secker-Walker LM . Hematological malignancies with t(9;11)(p21–22;q23)—a laboratory and clinical study of 125 cases. European 11q23 Workshop participants. Leukemia 1998; 12: 792–800.

    Article  CAS  Google Scholar 

  6. Balgobind BV, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009; 114: 2489–2496.

    Article  CAS  Google Scholar 

  7. Lie SO, Abrahamsson J, Clausen N, Forestier E, Hasle H, Hovi L et al. Treatment stratification based on initial in vivo response in acute myeloid leukaemia in children without Down's syndrome: results of NOPHO-AML trials. Br J Haematol 2003; 122: 217–225.

    Article  Google Scholar 

  8. Palle J, Frost BM, Forestier E, Gustafsson G, Nygren P, Hellebostad M et al. Cellular drug sensitivity in MLL-rearranged childhood acute leukaemia is correlated to partner genes and cell lineage. Br J Haematol 2005; 129: 189–198.

    Article  CAS  Google Scholar 

  9. Rubnitz JE, Raimondi SC, Tong X, Srivastava DK, Razzouk BI, Shurtleff SA et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 2002; 20: 2302–2309.

    Article  CAS  Google Scholar 

  10. Zwaan CM, Kaspers GJ, Pieters R, Hahlen K, Huismans DR, Zimmermann M et al. Cellular drug resistance in childhood acute myeloid leukemia is related to chromosomal abnormalities. Blood 2002; 100: 3352–3360.

    Article  CAS  Google Scholar 

  11. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  Google Scholar 

  12. Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 2003; 102: 262–268.

    Article  CAS  Google Scholar 

  13. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    Article  CAS  Google Scholar 

  14. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–2959.

    Article  CAS  Google Scholar 

  15. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    Article  CAS  Google Scholar 

  16. Creutzig U, Zimmermann M, Ritter J, Reinhardt D, Hermann J, Henze G et al. Treatment strategies and long-term results in paediatric patients treated in four consecutive AML-BFM trials. Leukemia 2005; 19: 2030–2042.

    Article  CAS  Google Scholar 

  17. Gibson BE, Wheatley K, Hann IM, Stevens RF, Webb D, Hills RK et al. Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. Leukemia 2005; 19: 2130–2138.

    Article  CAS  Google Scholar 

  18. Kardos G, Zwaan CM, Kaspers GJ, de-Graaf SS, de Bont ES, Postma A et al. Treatment strategy and results in children treated on three Dutch Childhood Oncology Group acute myeloid leukemia trials. Leukemia 2005; 19: 2063–2071.

    Article  CAS  Google Scholar 

  19. Den Boer ML, Harms DO, Pieters R, Kazemier KM, Gobel U, Korholz D et al. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol 2003; 21: 3262–3268.

    Article  CAS  Google Scholar 

  20. Van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J et al. The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 2006; 108: 3520–3529.

    Article  CAS  Google Scholar 

  21. Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA 2005; 102: 449–454.

    Article  CAS  Google Scholar 

  22. Balgobind BV, Van Vlierberghe P, van den Ouweland AM, Beverloo HB, Terlouw-Kromosoeto JN, van Wering ER et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromatosis. Blood 2008; 111: 4322–4328.

    Article  CAS  Google Scholar 

  23. Kiyoi H, Naoe T, Yokota S, Nakao M, Minami S, Kuriyama K et al. Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 1997; 11: 1447–1452.

    Article  CAS  Google Scholar 

  24. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M, Balgobind BV, Arentsen-Peters ST, Alders M et al. Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 2009; 113: 5951–5960.

    Article  CAS  Google Scholar 

  25. Hollink IH, Zwaan CM, Zimmermann M, Arentsen-Peters TC, Pieters R, Cloos J et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 2009; 23: 262–270.

    Article  CAS  Google Scholar 

  26. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R . Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  Google Scholar 

  27. Balgobind BV, Lugthart S, Hollink IHIM, Arentsen-Peters STJCM, van Wering ER, de Graaf SSN et al. EVI1 Overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia 2010; 24: 942–949.

    Article  CAS  Google Scholar 

  28. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M . Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics (Oxford, England) 2002; 18 (Suppl 1): S96–104.

    Article  Google Scholar 

  29. Irizarry RA, Gautier L, Bolstad BM, Miller C, Astrand M, Leslie M, Cope et al. Affy: methods for affymetrix oligonucleotide arrays.

  30. Smyth G . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 2004; 3: 1.

    Article  Google Scholar 

  31. Meijerink J, Mandigers C, van de Locht L, Tonnissen E, Goodsaid F, Raemaekers J . A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR. J Mol Diagn 2001; 3: 55–61.

    Article  CAS  Google Scholar 

  32. Chan BC, Ching AK, To KF, Leung JC, Chen S, Li Q et al. BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma. Oncogene 2008; 27: 1208–1217.

    Article  CAS  Google Scholar 

  33. Pieters R, Loonen AH, Huismans DR, Broekema GJ, Dirven MW, Heyenbrok MW et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 1990; 76: 2327–2336.

    CAS  Google Scholar 

  34. Haferlach T, Kohlmann A, Klein HU, Ruckert C, Dugas M, Williams PM et al. AML with translocation t(8;16)(p11;p13) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features. Leukemia 2009; 23: 934–943.

    Article  CAS  Google Scholar 

  35. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009; 10: 125–134.

    Article  CAS  Google Scholar 

  36. Chen HB, Pan K, Tang MK, Chui YL, Chen L, Su ZJ et al. Comparative proteomic analysis reveals differentially expressed proteins regulated by a potential tumor promoter, BRE, in human esophageal carcinoma cells. Biochem Cell Biol 2008; 86: 302–311.

    Article  CAS  Google Scholar 

  37. Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 2003; 12: 1087–1099.

    Article  CAS  Google Scholar 

  38. Li L, Yoo H, Becker FF, Ali-Osman F, Chan JY . Identification of a brain- and reproductive-organs-specific gene responsive to DNA damage and retinoic acid. Biochem Biophys Res Commun 1995; 206: 764–774.

    Article  CAS  Google Scholar 

  39. Li Q, Ching AK, Chan BC, Chow SK, Lim PL, Ho TC et al. A death receptor-associated anti-apoptotic protein, BRE, inhibits mitochondrial apoptotic pathway. J Biol Chem 2004; 279: 52106–52116.

    Article  CAS  Google Scholar 

  40. Chui YL, Ching AK, Chen S, Yip FP, Rowlands DK, James AE et al. BRE over-expression promotes growth of hepatocellular carcinoma. Biochem Biophys Res Commun 2010; 391: 1522–1525.

    Article  CAS  Google Scholar 

  41. Chan BC, Li Q, Chow SK, Ching AK, Liew CT, Lim PL et al. BRE enhances in vivo growth of tumor cells. Biochem Biophys Res Commun 2005; 326: 268–273.

    Article  CAS  Google Scholar 

  42. Tang MK, Wang CM, Shan SW, Chui YL, Ching AK, Chow PH et al. Comparative proteomic analysis reveals a function of the novel death receptor-associated protein BRE in the regulation of prohibitin and p53 expression and proliferation. Proteomics 2006; 6: 2376–2385.

    Article  CAS  Google Scholar 

  43. Greenbaum D, Colangelo C, Williams K, Gerstein M . Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 2003; 4: 117.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Yiu-Loon Chui, Department of Chemical Pathology and Sir YK Pao Center for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China, for providing the BRE antibody. Furthermore, we thank Dr E Hulleman for her input in the transfection experiments. This work was funded by the NWO ‘Netherlands Organization for Scientfic Research’ (BVB) and KOCR ‘Kinder-Oncologisch Centrum Rotterdam’ (BVB, IHIM).

Author contributions

BVB designed and performed research and wrote the paper; STJCMP and IHIM performed research. CM and RM performed LDI–PCR to identify the MLL rearrangements. VH, GJK, ESJMB, DR, UC, AB, and JS and JT made this research possible by collecting patient samples and characteristics in their own study groups and providing additional information; MMH-E, CMZ and RP designed and supervised research and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M van den Heuvel-Eibrink.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balgobind, B., Zwaan, C., Reinhardt, D. et al. High BRE expression in pediatric MLL-rearranged AML is associated with favorable outcome. Leukemia 24, 2048–2055 (2010). https://doi.org/10.1038/leu.2010.211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.211

Keywords

This article is cited by

Search

Quick links