Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Ectopic expression of wild-type FGFR3 cooperates with MYC to accelerate development of B-cell lineage neoplasms

Abstract

The t(4;14) translocation in multiple myeloma (MM) simultaneously dysregulates two apparent oncogenes: fibroblast growth factor receptor 3 (FGFR3) controlled by the 3′ immunoglobulin heavy chain enhancer on der(14) and MMSET controlled by the intronic Eμ enhancer on der(4). Although all MM tumors and cell lines with a t(4;14) translocation have dysregulated MMSET, about 25% do not express FGFR3. Therefore, the function of dysregulated wild-type (WT) FGFR3 in the pathogenesis of MM remains unclear. We developed a murine transgenic (TG) model in which WT FGFR3 is overexpressed in B lymphoid cells. Although high levels of FGFR3 resulted in lymphoid hyperplasia in about one-third of older mice, no increase in tumorigenesis was observed. However, double TG FGFR3/Myc mice develop mature B lymphoma tumors that occur with a higher penetrance and shorter latency than in single TG Myc mice (P=0.006). We conclude that expression of high levels of WT FGFR3 can be oncogenic and cooperate with MYC to generate B lymphoid tumors. This suggests that dysregulated FGFR3 expression is likely to be essential at least for the early stages of pathogenesis of MM tumors that have a t(4;14) translocation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43–66.

    Article  PubMed  Google Scholar 

  2. Bergsagel PL, Chesi M, Nardini E, Brents LA, Kirby SL, Kuehl WM . Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 1996; 93: 13931–13936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuehl WM, Bergsagel PL . Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2002; 2: 175–187.

    Article  CAS  PubMed  Google Scholar 

  4. Bergsagel PL, Kuehl WM . Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005; 23: 6333–6338.

    Article  CAS  PubMed  Google Scholar 

  5. Fonseca R, Blood E, Rue M, Harrington D, Oken MM, Kyle RA et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 2003; 101: 4569–4575.

    Article  CAS  PubMed  Google Scholar 

  6. Barlogie B, Shaughnessy J, Tricot G, Jacobson J, Zangari M, Anaissie E et al. Treatment of multiple myeloma. Blood 2004; 103: 20–32.

    Article  CAS  PubMed  Google Scholar 

  7. Chng WJ, Glebov O, Bergsagel PL, Kuehl WM . Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol 2007; 20: 571–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL . The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998; 92: 3025–3034.

    CAS  PubMed  Google Scholar 

  9. Eswarakumar VP, Lax I, Schlessinger J . Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16: 139–149.

    Article  CAS  PubMed  Google Scholar 

  10. Dailey L, Ambrosetti D, Mansukhani A, Basilico C . Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005; 16: 233–247.

    Article  CAS  PubMed  Google Scholar 

  11. L’Hote CG, Knowles MA . Cell responses to FGFR3 signalling: growth, differentiation and apoptosis. Exp Cell Res 2005; 304: 417–431.

    Article  PubMed  Google Scholar 

  12. Onwuazor ON, Wen XY, Wang DY, Zhuang L, Masih-Khan E, Claudio J et al. Mutation, SNP, and isoform analysis of fibroblast growth factor receptor 3 (FGFR3) in 150 newly diagnosed multiple myeloma patients. Blood 2003; 102: 772–773.

    Article  CAS  PubMed  Google Scholar 

  13. Salazar L, Kashiwada T, Krejci P, Muchowski P, Donoghue D, Wilcox WR et al. A novel interaction between fibroblast growth factor receptor 3 and the p85 subunit of phosphoinositide 3-kinase: activation-dependent regulation of ERK by p85 in multiple myeloma cells. Hum Mol Genet 2009; 18: 1951–1961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tavormina PL, Shiang R, Thompson LM, Zhu YZ, Wilkin DJ, Lachman RS et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet 1995; 9: 321–328.

    Article  CAS  PubMed  Google Scholar 

  15. Chesi M, Brents LA, Ely SA, Bais C, Robbiani DF, Mesri EA et al. Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma. Blood 2001; 97: 729–736.

    Article  CAS  PubMed  Google Scholar 

  16. Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al. Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 1997; 16: 260–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Williams IR, Lee BH, Duclos N, Huntly BJ, Donoghue DJ et al. Constitutively activated FGFR3 mutants signal through PLCgamma-dependent and -independent pathways for hematopoietic transformation. Blood 2005; 106: 328–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Z, Zhu YX, Plowright EE, Bergsagel PL, Chesi M, Patterson B et al. The myeloma-associated oncogene fibroblast growth factor receptor 3 is transforming in hematopoietic cells. Blood 2001; 97: 2413–2419.

    Article  CAS  PubMed  Google Scholar 

  19. Khnykin D, Troen G, Berner JM, Delabie J . The expression of fibroblast growth factors and their receptors in Hodgkin's lymphoma. J Pathol 2006; 208: 431–438.

    Article  CAS  PubMed  Google Scholar 

  20. Gomez-Roman JJ, Saenz P, Molina M, Cuevas Gonzalez J, Escuredo K, Santa Cruz S et al. Fibroblast growth factor receptor 3 is overexpressed in urinary tract carcinomas and modulates the neoplastic cell growth. Clin Cancer Res 2005; 11 (2 Pt 1): 459–465.

    CAS  PubMed  Google Scholar 

  21. Tomlinson DC, Baldo O, Harnden P, Knowles MA . FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J Pathol 2007; 213: 91–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grose R, Dickson C . Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 2005; 16: 179–186.

    Article  CAS  PubMed  Google Scholar 

  23. Keats JJ, Reiman T, Belch AR, Pilarski LM . Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leuk Lymphoma 2006; 47: 2289–2300.

    Article  CAS  PubMed  Google Scholar 

  24. Chesi M, Bergsagel PL, Kuehl WM . The enigma of ectopic expression of FGFR3 in multiple myeloma: a critical initiating event or just a target for mutational activation during tumor progression. Curr Opin Hematol 2002; 9: 288–293.

    Article  PubMed  Google Scholar 

  25. Paterson JL, Li Z, Wen XY, Masih-Khan E, Chang H, Pollett JB et al. Preclinical studies of fibroblast growth factor receptor 3 as a therapeutic target in multiple myeloma. Br J Haematol 2004; 124: 595–603.

    Article  CAS  PubMed  Google Scholar 

  26. Trudel S, Ely S, Farooqi Y, Affer M, Robbiani DF, Chesi M et al. Inhibition of fibroblast growth factor receptor 3 induces differentiation and apoptosis in t(4;14) myeloma. Blood 2004; 103: 3521–3528.

    Article  CAS  PubMed  Google Scholar 

  27. Trudel S, Stewart AK, Rom E, Wei E, Li ZH, Kotzer S et al. The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood 2006; 107: 4039–4046.

    Article  CAS  PubMed  Google Scholar 

  28. Trudel S, Li ZH, Wei E, Wiesmann M, Chang H, Chen C et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood 2005; 105: 2941–2948.

    Article  CAS  PubMed  Google Scholar 

  29. Masih-Khan E, Trudel S, Heise C, Li Z, Paterson J, Nadeem V et al. MIP-1alpha (CCL3) is a downstream target of FGFR3 and RAS-MAPK signaling in multiple myeloma. Blood 2006; 108: 3465–3471.

    Article  CAS  PubMed  Google Scholar 

  30. Qian S, Somlo G, Zhou B, Zhu L, Mi S, Mo X et al. Ribozyme cleavage leads to decreased expression of fibroblast growth factor receptor 3 in human multiple myeloma cells, which is associated with apoptosis and downregulation of vascular endothelial growth factor. Oligonucleotides 2005; 15: 1–11.

    Article  CAS  PubMed  Google Scholar 

  31. Iritani BM, Forbush KA, Farrar MA, Perlmutter RM . Control of B cell development by Ras-mediated activation of Raf. EMBO J 1997; 16: 7019–7031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park SS, Kim JS, Tessarollo L, Owens JD, Peng L, Han SS et al. Insertion of c-Myc into Igh induces B-cell and plasma-cell neoplasms in mice. Cancer Res 2005; 65: 1306–1315.

    Article  CAS  PubMed  Google Scholar 

  33. Morse III HC, Anver MR, Fredrickson TN, Haines DC, Harris AW, Harris NL et al. Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 2002; 100: 246–258.

    Article  CAS  PubMed  Google Scholar 

  34. Janz S, Morse H, Teitell MA . Mouse models of mature B-cell and plasma cell neoplasm. In: Li S (ed). Mouse Models of Human Blood Cancers: Basic Research and Pre-clinical Application. Springer, 2008, pp 180–200.

    Google Scholar 

  35. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sturn A, Quackenbush J, Trajanoski Z . Genesis: cluster analysis of microarray data. Bioinformatics 2002; 18: 207–208.

    Article  CAS  PubMed  Google Scholar 

  37. Zhan F, Barlogie B, Arzoumanian V, Huang Y, Williams DR, Hollmig K et al. Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis. Blood 2007; 109: 1692–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cariappa A, Chen L, Haider K, Tang M, Nebelitskiy E, Moran ST et al. A catalytically inactive form of protein kinase C-associated kinase/receptor interacting protein 4, a protein kinase C beta-associated kinase that mediates NF-kappa B activation, interferes with early B cell development. J Immunol 2003; 171: 1875–1880.

    Article  CAS  PubMed  Google Scholar 

  40. Iseki M, Kubo-Akashi C, Kwon SM, Yamaguchi A, Takatsu K, Takaki S . APS, an adaptor molecule containing PH and SH2 domains, has a negative regulatory role in B cell proliferation. Biochem Biophys Res Commun 2005; 330: 1005–1013.

    Article  CAS  PubMed  Google Scholar 

  41. Kim JS, Han SS, Park SS, McNeil N, Janz S . Plasma cell tumour progression in iMycEmu gene-insertion mice. J Pathol 2006; 209: 44–55.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu D, Qi CF, Morse III HC, Janz S, Stevenson FK . Deregulated expression of the Myc cellular oncogene drives development of mouse ‘Burkitt-like’ lymphomas from naive B cells. Blood 2005; 105: 2135–2137.

    Article  CAS  PubMed  Google Scholar 

  43. Qing J, Du X, Chen Y, Chan P, Li H, Wu P et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J Clin Invest 2009; 119: 1216–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 2008; 13: 167–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Marta Chesi (Mayo Clinic, Scottsdale, AZ) for providing immunohistochemistry (Figures 1c–f). This work was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research (WMK), and National Institute of Allergy and Infectious Diseases (HCM), and Award Number P50CA097274 from the National Cancer Institute (SJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W M Kuehl.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zingone, A., Cultraro, C., Shin, DM. et al. Ectopic expression of wild-type FGFR3 cooperates with MYC to accelerate development of B-cell lineage neoplasms. Leukemia 24, 1171–1178 (2010). https://doi.org/10.1038/leu.2010.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.50

Keywords

This article is cited by

Search

Quick links