Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia

Abstract

MicroRNAs (miRNAs) relevant to acute lymphoblastic leukemia (ALL) in children are hypothesized to be largely unknown as most miRNAs have been identified in non-leukemic tissues. In order to discover these miRNAs, we applied high-throughput sequencing to pooled fractions of leukemic cells obtained from 89 pediatric cases covering seven well-defined genetic types of ALL and normal hematopoietic cells. This resulted into 78 million small RNA reads representing 554 known, 28 novel and 431 candidate novel miR genes. In all, 153 known, 16 novel and 170 candidate novel mature miRNAs and miRNA-star strands were only expressed in ALL, whereas 140 known, 2 novel and 82 candidate novel mature miRNAs and miRNA-star strands were unique to normal hematopoietic cells. Stem-loop reverse transcriptase (RT)-quantitative PCR analyses confirmed the differential expression of selected mature miRNAs in ALL types and normal cells. Expression of 14 new miRNAs inversely correlated with expression of predicted target genes (−0.49Spearman's correlation coefficients (Rs)−0.27, P0.05); among others, low levels of novel sol-miR-23 associated with high levels of its predicted (antiapoptotic) target BCL2 (B-cell lymphoma 2) in precursor B-ALL (Rs −0.36, P=0.007). The identification of >1000 miR genes expressed in different types of ALL forms a comprehensive repository for further functional studies that address the role of miRNAs in the biology of ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  2. Ventura A, Jacks T . MicroRNAs and cancer: short RNAs go a long way. Cell 2009; 136: 586–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Winter J, Jung S, Keller S, Gregory RI, Diederichs S . Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11: 228–234.

    Article  CAS  PubMed  Google Scholar 

  5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  6. Chen CZ, Lodish HF . MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 2005; 17: 155–165.

    Article  CAS  PubMed  Google Scholar 

  7. Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M et al. MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 2008; 26: 462–469.

    Article  CAS  PubMed  Google Scholar 

  8. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124: 1169–1181.

    Article  CAS  PubMed  Google Scholar 

  9. Jongen-Lavrencic M, Sun SM, Dijkstra MK, Valk PJ, Lowenberg B . MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008; 111: 5078–5085.

    Article  CAS  PubMed  Google Scholar 

  10. Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA 2007; 104: 19971–19976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 313–322.

    Article  CAS  PubMed  Google Scholar 

  12. Schotte D, De Menezes RX, Akbari Moqadam F, Mohammadi Khankahdani L, Lange-Turenhout EA, Chen C et al. MicroRNAs characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 2011; 96: 703–711.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schotte D, Lange-Turenhout EA, Stumpel DJ, Stam RW, Buijs-Gladdines JG, Meijerink JP et al. Expression of miR-196b is not exclusively MLL-driven but is especially linked to activation of HOXA genes in pediatric acute lymphoblastic leukemia. Haematologica 2010; 95: 1675–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berezikov E, Cuppen E, Plasterk RH . Approaches to microRNA discovery. Nat Genet 2006; 38 (Suppl): S2–S7.

    Article  CAS  PubMed  Google Scholar 

  15. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005; 37: 766–770.

    Article  CAS  PubMed  Google Scholar 

  16. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 2005; 434: 338–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmed FE . Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev Mol Diagn 2007; 7: 569–603.

    Article  CAS  PubMed  Google Scholar 

  18. Whiteford N, Skelly T, Curtis C, Ritchie ME, Lohr A, Zaranek AW et al. Swift: primary data analysis for the Illumina Solexa sequencing platform. Bioinformatics 2009; 25: 2194–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005; 106: 2484–2490.

    Article  CAS  PubMed  Google Scholar 

  20. Den Boer ML, Harms DO, Pieters R, Kazemier KM, Gobel U, Korholz D et al. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol 2003; 21: 3262–3268.

    Article  CAS  PubMed  Google Scholar 

  21. Weerkamp F, de Haas EF, Naber BA, Comans-Bitter WM, Bogers AJ, van Dongen JJ et al. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol 2005; 115: 834–840.

    Article  PubMed  Google Scholar 

  22. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E . Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120: 21–24.

    Article  CAS  PubMed  Google Scholar 

  23. Berezikov E, Liu N, Flynt AS, Hodges E, Rooks M, Hannon GJ et al. Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nat Genet 2010; 42: 6–9; author reply -10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet 2006; 38: 1375–1377.

    Article  CAS  PubMed  Google Scholar 

  25. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33: e179.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Edgar R, Domrachev M, Lash AE . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30: 207–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009; 10: 125–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Basso K, Sumazin P, Morozov P, Schneider C, Maute RL, Kitagawa Y et al. Identification of the human mature B cell miRNome. Immunity 2009; 30: 744–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. The colorectal microRNAome. Proc Natl Acad Sci USA 2006; 103: 3687–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Creighton CJ, Benham AL, Zhu H, Khan MF, Reid JG, Nagaraja AK et al. Discovery of novel microRNAs in female reproductive tract using next generation sequencing. PLoS One 2010; 5: e9637.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stark MS, Tyagi S, Nancarrow DJ, Boyle GM, Cook AL, Whiteman DC et al. Characterization of the melanoma miRNAome by deep sequencing. PLoS One 2010; 5: e9685.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R et al. Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics 2010; 11: 288.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang H, Yang JH, Zheng YS, Zhang P, Chen X, Wu J et al. Genome-wide analysis of small RNA and novel microRNA discovery in human acute lymphoblastic leukemia based on extensive sequencing approach. PLoS One 2009; 4: e6849.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ramsingh G, Koboldt DC, Trissal M, Chiappinelli KB, Wylie T, Koul S et al. Complete characterization of the microRNAome in a patient with acute myeloid leukemia. Blood 2010; 116: 5316–5326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 2010; 24: 992–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lan FF, Wang H, Chen YC, Chan CY, Ng SS, Li K et al. Hsa-let-7 g inhibits proliferation of hepatocellular carcinoma cells by down-regulation of c-Myc and up-regulation of p16(INK4A). Int J Cancer 2011; 128: 319–331.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao C, Sun G, Li S, Lang MF, Yang S, Li W et al. MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci USA 2010; 107: 1876–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong C, Ji M, Ji C . microRNAs and their potential target genes in leukemia pathogenesis. Cancer Biol Ther 2009; 8: 200–205.

    Article  CAS  PubMed  Google Scholar 

  41. Reed JC . Bcl-2: prevention of apoptosis as a mechanism of drug resistance. Hematol Oncol Clin North Am 1995; 9: 451–473.

    Article  CAS  PubMed  Google Scholar 

  42. Coustan-Smith E, Kitanaka A, Pui CH, McNinch L, Evans WE, Raimondi SC et al. Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia. Blood 1996; 87: 1140–1146.

    CAS  PubMed  Google Scholar 

  43. Cirinna M, Trotta R, Salomoni P, Kossev P, Wasik M, Perrotti D et al. Bcl-2 expression restores the leukemogenic potential of a BCR/ABL mutant defective in transformation. Blood 2000; 96: 3915–3921.

    CAS  PubMed  Google Scholar 

  44. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Keene JD, Komisarow JM, Friedersdorf MB . RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 2006; 1: 302–307.

    Article  CAS  PubMed  Google Scholar 

  46. Tan LP, Seinen E, Duns G, de Jong D, Sibon OC, Poppema S et al. A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 2009; 37: e137.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005; 102: 18081–18086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financially supported by The Netherlands Organization for Scientific Research (NWO-Vidi Grant; MLdB), the Quality of Life Foundation (MLdB/RP) and the Pediatric Oncology Foundation Rotterdam, KOCR (MLdB/RP). We thank Christel Kockx and Michael Moorhouse (core-facility high-throughput sequencing, Erasmus Center for Biomics, Rotterdam) for assistance with the Solexa high-throughput sequencing reactions and data extraction, respectively. We are grateful to Dr Eugene Berezikov (InteRNA genomics BV and the Hubrecht Institute, Utrecht) for the bioinformatic analysis of the small RNA sequence reads and helpful discussions. We thank Dr Leila Mohammadi Khankahdani (Department of Pediatric Oncology, Erasmus MC/Sophia Children's Hospital) for her help in the integration of miRNA and mRNA expression data.

Author contributions

DS performed research, analyzed data and wrote manuscript; FAM and EAML-T performed research, analyzed data and revised the manuscript; CC provided custom stem-loop based TaqMan assays for miRNA detection and revised the manuscript; WFJvIJ performed Solexa sequencing and revised the manuscript; RP and MLdB supervised research, analyzed data, wrote and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L den Boer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schotte, D., Moqadam, F., Lange-Turenhout, E. et al. Discovery of new microRNAs by small RNAome deep sequencing in childhood acute lymphoblastic leukemia. Leukemia 25, 1389–1399 (2011). https://doi.org/10.1038/leu.2011.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.105

Keywords

This article is cited by

Search

Quick links