Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2

Abstract

We and others have previously reported linkage to schizophrenia on chromosome 10q25–q26 but, to date, a susceptibility gene in the region has not been identified. We examined data from 3606 single-nucleotide polymorphisms (SNPs) mapping to 10q25–q26 that had been typed in a genome-wide association study (GWAS) of schizophrenia (479 UK cases/2937 controls). SNPs with P<0.01 (n=40) were genotyped in an additional 163 UK cases and those markers that remained nominally significant at P<0.01 (n=22) were genotyped in replication samples from Ireland, Germany and Bulgaria consisting of a total of 1664 cases with schizophrenia and 3541 controls. Only one SNP, rs17101921, was nominally significant after meta-analyses across the replication samples and this was genotyped in an additional six samples from the United States/Australia, Germany, China, Japan, Israel and Sweden (n=5142 cases/6561 controls). Across all replication samples, the allele at rs17101921 that was associated in the GWAS showed evidence for association independent of the original data (OR 1.17 (95% CI 1.06–1.29), P=0.0009). The SNP maps 85 kb from the nearest gene encoding fibroblast growth factor receptor 2 (FGFR2) making this a potential susceptibility gene for schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Gottesman II . Schizophrenia Genesis, The Origins of Madness. WH Freeman and Company: New York, 1991.

    Google Scholar 

  2. Cardno A, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  3. Risch N . Genetic linkage and complex diseases, with special reference to psychiatric disorders. Genet Epidemiol 1990; 7: 3–16.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  6. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  8. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V et al. Identification of novel schizophrenia loci by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  PubMed  Google Scholar 

  10. Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 2008; 17: 458–465.

    Article  CAS  PubMed  Google Scholar 

  11. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  12. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M . Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.

    Article  CAS  PubMed  Google Scholar 

  13. Stefansson H, Rujescu D, Cichon S, Pietiläinen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. The International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  PubMed Central  Google Scholar 

  15. Williams NM, Norton N, Williams H, Ekholm B, Hamshere ML, Lindblom Y et al. A systematic genomewide linkage study in 353 sib pairs with schizophrenia. Am J Hum Genet 2003; 73: 1355–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mowry BJ, Ewen KR, Nancarrow DJ, Lennon DP, Nertney DA, Jones HL et al. Second stage of a genome scan of schizophrenia: study of five positive regions in an expanded sample. Am J Med Genet 2000; 96: 864–869.

    Article  CAS  PubMed  Google Scholar 

  17. Kelsoe JR, Spence MA, Loetscher E, Foguet M, Sadovnick AD, Remick RA et al. A genome survey indicates a possible susceptibility locus for bipolar disorder on chromosome 22. Proc Natl Acad Sci USA 2001; 98: 585–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cichon S, Schmidt-Wolf G, Schumacher J, Müller DJ, Hürter M, Schulze TG et al. A possible susceptibility locus for bipolar affective disorder in chromosomal region 10q25-q26. Mol Psychiatry 2001; 6: 342–349.

    Article  CAS  PubMed  Google Scholar 

  19. Lerer B, Segman RH, Hamdan A, Kanyas K, Karni O, Kohn Y et al. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry 2003; 8: 488–498.

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Juo SH, Dewan A, Grunn A, Tong X, Brito M et al. Evidence for a putative bipolar disorder locus on 2p13–16 and other potential loci on 4q31, 7q34, 8q13, 9q31, 10q21–24, 13q32, 14q21 and 17q11–12. Mol Psychiatry 2003; 8: 333–342.

    Article  CAS  PubMed  Google Scholar 

  21. Suarez BK, Duan J, Sanders AR, Hinrichs AL, Jin CH, Hou C et al. Genomewide linkage scan of 409 European-ancestry and African American families with schizophrenia: suggestive evidence of linkage at 8p23.3–p21.2 and 11p13.1–q14.1 in the combined sample. Am J Hum Genet 2006; 78: 315–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Levinson DF, Mahtani MM, Nancarrow DJ, Brown DM, Kruglyak L, Kirby A et al. Genome scan of schizophrenia. Am J Psychiatry 1998; 155: 741–750.

    CAS  PubMed  Google Scholar 

  23. Craddock N, O’Donovan MC, Owen MJ . Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull 2006; 32: 9–16.

    Article  PubMed  Google Scholar 

  24. Ewald H, Flint TJ, Jorgensen TH, Wang AG, Jensen P, Vang M et al. Search for a shared segment on chromosome 10q26 in patients with bipolar affective disorder or schizophrenia from the Faroe Islands. Am J Med Genet 2002; 114: 196–204.

    Article  PubMed  Google Scholar 

  25. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  PubMed Central  Google Scholar 

  26. Jonsson EG, Edman-Ahlbom B, Sillen A, Gunnar A, Kulle B, Frigessi A et al. Brain-derived neurotrophic factor gene (BDNF) variants and schizophrenia: an association study. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 924–933.

    Article  PubMed  Google Scholar 

  27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moskvina V, Schmidt KM . On multiple-testing correction in genome-wide association studies. Genet Epidemiol 2008; 32: 567–573.

    Article  PubMed  Google Scholar 

  29. Dudbridge F, Gusnanto A . Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 2008; 32: 227–234.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 2007; 315: 848–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L et al. A survey of genetic human cortical gene expression. Nat Genet 2007; 39: 1494–1499.

    Article  CAS  PubMed  Google Scholar 

  32. Alzheimer C, Werner S . Fibroblast growth factors and neuroprotection. Adv Exp Med Biol 2002; 513: 335–351.

    Article  CAS  PubMed  Google Scholar 

  33. Umemori H, Linhoff MW, Ornitz DM, Sanes JR . FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 2004; 118: 257–270.

    Article  CAS  PubMed  Google Scholar 

  34. Turner CA, Akil H, Watson SJ, Evans SJ . The fibroblast growth factor system and mood disorders. Biol Psychiatry 2006; 59: 1128–1135.

    Article  CAS  PubMed  Google Scholar 

  35. Riva MA, Molteni R, Bedogni, Racagni G, Fumagalli F . Emerging role of the FGF system in psychiatric disorders. Trends Pharmacol Sci 2005; 26: 228–231.

    Article  CAS  PubMed  Google Scholar 

  36. Hashimoto K, Shimizu E, Komatsu N, Nakazato M, Okamura N, Watanabe H et al. Increased levels of serum basic fibroblast growth factor in schizophrenia. Psychiatry Res 2003; 120: 211–218.

    Article  CAS  PubMed  Google Scholar 

  37. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry MI . Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70: 221–227.

    Article  CAS  PubMed  Google Scholar 

  38. Klejbor I, Myers JM, Hausknecht K, Corso TD, Gambino AS, Morys J et al. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons - inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem 2006; 97: 1243–1258.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study makes use of data generated by the Wellcome Trust Case Control Consortium. A full list of the investigators who contributed to the generation of the data is available from www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 076113. The UK research was supported by grants from the MRC, the Wellcome Trust and by a NIMH (USA) CONTE: 2 P50 MH066392-05A1. In Dublin, the research was supported by Science Foundation Ireland, the Health Research Board (Ireland), and the Wellcome Trust. We are grateful to Professor John Waddington for sample recruitment. Irish controls were supplied by Dr Joe McPartlin and the Trinity College Biobank. In Bonn and Mannheim, the work was supported by the National Genomic Network of the ‘Bundesministerium für Bildung und Forschung’ (BMBF), the Alfried Krupp von Bohlen und Halbach-Stiftung and in Bethesda the work was supported in part by the Intramural Program of the NIMH. We also thank the Department of Psychiatry, LMU Munich for clinical characterization of the Munich subjects and the processing of the samples. Recruitment in Munich was partially supported by GlaxoSmithKline. The Ashkenazi samples are part of the Hebrew University Genetic Resource, HUGR (www.hugr.org). In Sweden support was obtained from the Swedish Research Council (K2007-62X-15078-04-3, K2008-62P-20597-01-3), the Wallenberg Foundation and the HUBIN project. The following authors are included under the Molecular Genetics of Schizophrenia Collaboration: PV Gejman, AR Sanders, J Duan (Evanston Healthcare and Northwestern University, IL, USA), DF Levinson (Stanford University, CA, USA), NG Buccola (Louisiana State University, LA, USA), BJ Mowry (University of Queensland, Brisbane, Australia), R Freedman (University of Colorado Health Science Centre, Denver, USA), F Amin (Emory University, Atlanta, USA), DW Black (University of Iowa College of Medicine, IA, USA), JM Silverman (Mount Sinai School of Medicine, New York, USA), WJ Byerley (University of California, San Francisco, USA), CR Cloninger (Washington University).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M C O'Donovan.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Donovan, M., Norton, N., Williams, H. et al. Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Mol Psychiatry 14, 30–36 (2009). https://doi.org/10.1038/mp.2008.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.108

Keywords

This article is cited by

Search

Quick links