Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer

Abstract

Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fombonne E . Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry 2005; 66: S3–S8.

    Google Scholar 

  2. Insel TR, Scolnick EM . Cure therapeutics and strategic prevention: raising the bar for mental health research. Mol Psychiatry 2006; 11: 11–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. WHO Report. 2002; http://www.who.int/healthinfo/bodestimates/en/.

  4. Wu EQ, Birnbaum HG, Shi L, Ball DE, Kessler RC, Moulis M et al. The economic burden of schizophrenia in the United States in 2002. J Clin Psychiatry 2005; 66: 1122–1129.

    Article  PubMed  Google Scholar 

  5. McMahon M, Morgan S, Mitton C . The Common Drug Review: a NICE start for Canada? Health Policy 2006; 77: 339–351.

    Article  PubMed  Google Scholar 

  6. Couzin J . Science and commerce. Gene tests for psychiatric risk polarize researchers. Science 2008; 319: 274–277.

    Article  CAS  PubMed  Google Scholar 

  7. Hyman SE . Can neuroscience be integrated into the DSM-V? Nat Rev Neurosci 2007; 8: 725–732.

    Article  CAS  PubMed  Google Scholar 

  8. Jablensky A . Subtyping schizophrenia: implications for genetic research. Mol Psychiatry 2006; 11: 815–836.

    Article  CAS  PubMed  Google Scholar 

  9. Burstein HJ, Schwartz RS . Molecular Origins of Cancer. N Engl J Med 2008; 358: 527.

    Article  CAS  PubMed  Google Scholar 

  10. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  11. Belmonte MK, Cook Jr EH, Anderson GM, Rubenstein JL, Greenough WT, Beckel-Mitchener A et al. Autism as a disorder of neural information processing: directions for research and targets for therapy. Mol Psychiatry 2004; 9: 646–663.

    Article  CAS  PubMed  Google Scholar 

  12. Moldin SO, Rubenstein JL, Hyman SE . Can autism speak to neuroscience? J Neurosci 2006; 26: 6893–6896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Phillips ML, Ladouceur CD, Drevets WC . A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 2008; 13: 833–857. [Epub ahead of print] doi: 10.1038/mp.2008.65.

    Article  Google Scholar 

  14. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y et al. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 2007; 130: 1146–1158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Harrison PJ . Schizophrenia susceptibility genes and neurodevelopment. Biol Psychiatry 2007; 61: 1119–1120.

    Article  PubMed  Google Scholar 

  16. Nusbaum C, Mikkelsen TS, Zody MC, Asakawa S, Taudien S, Garber M et al. DNA sequence and analysis of human chromosome 8. Nature 2006; 439: 331–335.

    Article  CAS  PubMed  Google Scholar 

  17. Hellmann I, PrĂ¼fer K, Ji H, Zody MC, Pääbo S, Ptak SE . Why do human diversity levels vary at a megabase scale? Genome Res 2005; 15: 1222–1231.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525–528.

    Article  CAS  PubMed  Google Scholar 

  19. Sebat J . Major changes in our DNA lead to major changes in our thinking. Nat Genet 2007; 39: S3–S5.

    Article  CAS  PubMed  Google Scholar 

  20. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 2007; 318: 420–426.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Frank B, Bermejo JL, Hemminki K, Sutter C, Wappenschmidt B, Meindl A et al. Copy number variant in the candidate tumor suppressor gene MTUS1 and familial breast cancer risk. Carcinogenesis 2007; 28: 1442–1445.

    Article  CAS  PubMed  Google Scholar 

  22. Lee C, Morton CC . Structural Genomic Variation and Personalized Medicine. N Engl J Med 2008; 358: 740–741.

    Article  CAS  PubMed  Google Scholar 

  23. Korbel JO, Urban AE, Grubert F, Du J, Royce TE, Starr P et al. Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome. Proc Natl Acad Sci USA 2007; 104: 10110–10115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bennetto L, Kuschner ES, Hyman SL . Olfaction and taste processing in autism. Biol Psychiatry 2007; 62: 1015–1021.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Seckinger RA, Goudsmit N, Coleman E, Harkavy-Friedman J, Yale S, Rosenfield PJ et al. Olfactory identification and WAIS-R performance in deficit and nondeficit schizophrenia. Schizophr Res 2004; 69: 55–65.

    Article  PubMed  Google Scholar 

  26. Strous RD, Shoenfeld Y . To smell the immune system: olfaction, autoimmunity and brain involvement. Autoimmun Rev 2006; 6: 54–60.

    Article  CAS  PubMed  Google Scholar 

  27. Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral D, Van de Water J . Autoantibodies in autism spectrum disorders (ASD). Ann N Y Acad Sci 2007; 1107: 79–91.

    Article  CAS  PubMed  Google Scholar 

  28. Knight JG, Menkes DB, Highton J, Adams DD . Rationale for a trial of immunosuppressive therapy in acute schizophrenia. Mol Psychiatry 2007; 12: 424–431.

    Article  CAS  PubMed  Google Scholar 

  29. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008; 82: 477–488.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Groth M, Szafranski K, Taudien S, Huse K, Mueller O, Rosenstiel P et al. High-resolution mapping of the 8p23.1 beta-defensin cluster reveals strictly concordant copy number variation of all genes. Hum Mutat 2008; 29: 1247–1254. [E-pub ahead of print] doi: 10.1002/humu.20751.

    Article  CAS  PubMed  Google Scholar 

  31. Fellermann K, Stange DE, Schaeffeler E, Schmalzl H, Wehkamp J, Bevins CL et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 2006; 79: 439–448.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al. International SNP Map Working Group. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001; 409: 928–933.

    Article  CAS  PubMed  Google Scholar 

  33. Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T et al. Mapping and sequencing of structural variation from eight human genomes. Nature 2008; 453: 56–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. MacIntyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ . Chromosomal abnormalities and mental illness. Mol Psychiatry 2003; 8: 275–287.

    Article  CAS  PubMed  Google Scholar 

  35. Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL et al. Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Genet 1995; 60: 252–260.

    Article  CAS  PubMed  Google Scholar 

  36. Kendler KS, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al. Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psychiatry 1996; 153: 1534–1540.

    Article  CAS  PubMed  Google Scholar 

  37. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  38. Suarez BK, Duan J, Sanders AR, Hinrichs AL, Jin CH, Hou C et al. Genomewide linkage scan of 409 European-ancestry and African American families with schizophrenia: suggestive evidence of linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the combined sample. Am J Hum Genet 2006; 78: 315–333.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Goes FS, Sanders LL, Potash JB . The genetics of psychotic bipolar disorder. Curr Psychiatry Rep 2008; 10: 178–189.

    Article  PubMed  Google Scholar 

  40. Serretti A, Mandelli L . The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions. Mol Psychiatry 2008; 13: 742–771.

    Article  CAS  PubMed  Google Scholar 

  41. Birnbaum D, AdĂ©laĂ¯de J, Popovici C, Charafe-Jauffret E, Mozziconacci MJ, Chaffanet M . Chromosome arm 8p and cancer: a fragile hypothesis. Lancet Oncol 2003; 4: 639–642.

    Article  CAS  PubMed  Google Scholar 

  42. Ramalingam A, Duhadaway JB, Sutanto-Ward E, Wang Y, Dinchuk J, Huang M et al. Prendergast GC. Bin3 deletion causes cataracts and increased susceptibility to lymphoma during aging. Cancer Res 2008; 68: 1683–1690.

    Article  CAS  PubMed  Google Scholar 

  43. http://www.schizophreniaforum.org/res/sczgene/default.asp (last accessed 26 July 2008).

  44. Allen NC, Bagade S, McQueen MB, Ioannidis JPA, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nature Genetics 2008; 40: 499–506.

    Article  CAS  Google Scholar 

  45. Bray NJ, Holmans PA, van den Bree MB, Jones L, Elliston LA, Hughes G et al. Cis- and trans-loci influence expression of the schizophrenia susceptibility gene DTNBP1. Hum Mol Genet 2008; 17: 1169–1174.

    Article  CAS  PubMed  Google Scholar 

  46. Straub RE, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C et al. Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes. Mol Psychiatry 2002; 7: 542–559.

    Article  CAS  PubMed  Google Scholar 

  47. Owen MJ, Craddock N, O'Donovan MC . Schizophrenia: genes at last? Trends Genet 2005; 21: 518–525.

    Article  CAS  PubMed  Google Scholar 

  48. Kim JJ, Mandelli L, Pae CU, De Ronchi D, Jun TY, Lee C et al. Is there protective haplotype of dysbindin gene (DTNBP1) 3 polymorphisms for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 375–379.

    Article  CAS  PubMed  Google Scholar 

  49. Kas MJ, Fernandes C, Schalkwyk LC, Collier DA . Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol Psychiatry 2007; 12: 324–330.

    Article  CAS  PubMed  Google Scholar 

  50. Cholfin JA, Rubenstein JL . Patterning of frontal cortex subdivisions by Fgf17. Proc Natl Acad Sci USA 2007; 104: 7652–7657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cholfin JA, Rubenstein JL . Genetic regulation of prefrontal cortex development and function. Novartis Found Symp 2007; 288: 165–173.

    CAS  PubMed  Google Scholar 

  52. Scearce-Levie K, Roberson ED, Gerstein H, Cholfin JA, Mandiyan VS, Shah NM et al. Abnormal social behaviors in mice lacking Fgf17. Genes Brain Behav 2008; 7: 344–354.

    Article  CAS  PubMed  Google Scholar 

  53. http://www.alzforum.org/res/com/gen/alzgene/default.asp (last accessed 26 July 2008).

  54. http://www.pdgene.org/ (last accessed 26 July 2008).

  55. Chang TC, Mendell JT . microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 2007; 8: 215–239.

    Article  CAS  PubMed  Google Scholar 

  56. Kim SH, Hu Y, Cadman S, Bouloux P . Diversity in fibroblast growth factor receptor 1 regulation: learning from the investigation of Kallmann syndrome. J Neuroendocrinol 2008; 20: 141–163.

    Article  CAS  PubMed  Google Scholar 

  57. Kallmann FJ, Schonfeld WA, Barrerea SE . The genetic aspects of primary eunuchoidism. Am J Ment Defic 1944; 158: 203–236.

    Google Scholar 

  58. Kallmann FJ . Heredity and eugenics. Am J Psychiatry 1944; 100: 551–553.

    Article  Google Scholar 

  59. Cowen MA, Green M . The Kallmann's syndrome variant (KSV) model of the schizophrenias. Schizophr Res 1993; 9: 1–10.

    Article  CAS  PubMed  Google Scholar 

  60. Corcoran C, Whitaker A, Coleman E, Fried J, Feldman J, Goudsmit N et al. Olfactory deficits, cognition and negative symptoms in early onset psychosis. Schizophr Res 2005; 80: 283–293.

    Article  PubMed  Google Scholar 

  61. Versiani BR, Trarbach E, Koenigkam-Santos M, Dos Santos AC, Elias LL, Moreira AC et al. Clinical assessment and molecular analysis of GnRHR and KAL1 genes in males with idiopathic hypogonadotrophic hypogonadism. Clin Endocrinol (Oxf) 2007; 66: 173–179.

    Article  CAS  Google Scholar 

  62. Vagenakis GA, Hyphantis TN, Papageorgiou C, Protonatariou A, Sgourou A, Dimopoulos PA et al. Kallmann's syndrome and schizophrenia. Int J Psychiatry Med 2004; 34: 379–390.

    Article  PubMed  Google Scholar 

  63. Papanikolaou K, Paliokosta E, Gyftodimou J, Kolaitis G, Vgenopoulou S, Sarri C et al. A case of partial trisomy of chromosome 8p associated with autism. J Autism Dev Disord 2006; 36: 705–709.

    Article  PubMed  Google Scholar 

  64. Zwaigenbaum L, Sonnenberg LK, Heshka T, Eastwood S, Xu J . A girl with pervasive developmental disorder and complex chromosome rearrangement involving 8p and 10p. J Autism Dev Disord 2005; 35: 393–399.

    Article  CAS  PubMed  Google Scholar 

  65. Tahvanainen E, Ranta S, Hirvasniemi A, Karila E, Leisti J, Sistonen P et al. The gene for a recessively inherited human childhood progressive epilepsy with mental retardation maps to the distal short arm of chromosome 8. Proc Natl Acad Sci USA 1994; 91: 7267–7270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ranta S, Lehesjoki AE, Hirvasniemi A, Weissenbach J, Ross B, Leal SM et al. Genetic and physical mapping of the progressive epilepsy with mental retardation (EPMR) locus on chromosome 8p. Genome Res 1996; 6: 351–360.

    Article  CAS  PubMed  Google Scholar 

  67. Fombonne E . Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 2003; 33: 365–382.

    Article  PubMed  Google Scholar 

  68. Canitano R . Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 2007; 16: 61–66.

    Article  PubMed  Google Scholar 

  69. Hyde TM, Lewis SW . The secondary schizophrenias. In: Hirsch SR, Weinberger DR (ed). Schizophrenia. Blackwell Science Ltd: Malden, MA, 2003, pp 187–202.

    Google Scholar 

  70. Qin P, Xu H, Laursen TM, Vestergaard M, Mortensen PB . Risk for schizophrenia and schizophrenia-like psychosis among patients with epilepsy population based cohort study. BMJ 2005; 331: 23.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Sherr EH, Owen R, Albertson DG, Pinkel D, Cotter PD, Slavotinek AM et al. Genomic microarray analysis identifies candidate loci in patients with corpus callosum anomalies. Neurology 2005; 65: 1496–1498.

    Article  CAS  PubMed  Google Scholar 

  72. Dobyns WB . Absence makes the search grow longer. Am J Hum Genet 1996; 58: 7–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P et al. Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 2007; 8: 287–299.

    Article  CAS  PubMed  Google Scholar 

  74. Butler MG, Fischer W, Kibiryeva N, Bittel DC . Array comparative genomic hybridization (aCGH) analysis in Prader-Willi syndrome. Am J Med Genet A 2008; 146: 854–860.

    Article  CAS  Google Scholar 

  75. Dimitropoulos A, Schultz RT . Autistic-like symptomatology in Prader-Willi syndrome: a review of recent findings. Curr Psychiatry Rep 2007; 9: 159–164.

    Article  PubMed  Google Scholar 

  76. Stefan M, Claiborn KC, Stasiek E, Chai JH, Ohta T, Longnecker R et al. Genetic mapping of putative Chrna7 and Luzp2 neuronal transcriptional enhancers due to impact of a transgene-insertion and 6.8 Mb deletion in a mouse model of Prader-Willi and Angelman syndromes. BMC Genomics 2005; 6: 157.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Yen CC, Liang SC, Jong YJ, Chen YJ, Lin CH, Chen YM et al. Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer 2007; 57: 292–301.

    Article  PubMed  Google Scholar 

  78. Shen H, Zhu Y, Wu YJ, Qiu HR, Shu YQ . Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization. Cancer Genet Cytogenet 2008; 181: 100–107.

    Article  CAS  PubMed  Google Scholar 

  79. Prentice LM, Shadeo A, Lestou VS, Miller MA, deLeeuw RJ, Makretsov N et al. NRG1 gene rearrangements in clinical breast cancer: identification of an adjacent novel amplicon associated with poor prognosis. Oncogene 2005; 24: 7281–7289.

    Article  CAS  PubMed  Google Scholar 

  80. Vecchione A, Ishii H, Shiao YH, Trapasso F, Rugge M, Tamburrino JF et al. Fez1/lzts1 alterations in gastric carcinoma. Clin Cancer Res 2001; 7: 1546–1552.

    CAS  PubMed  Google Scholar 

  81. Hughes S, Williams RD, Webb E, Houlston RS . Meta-analysis and pooled re-analysis of copy number changes in colorectal cancer detected by comparative genomic hybridization. Anticancer Res 2006; 26: 3439–3444.

    CAS  PubMed  Google Scholar 

  82. Wolff EM, Liang G, Jones PA . Mechanisms of Disease: genetic and epigenetic alterations that drive bladder cancer. Nat Clin Pract Urol 2005; 2: 502–510.

    Article  CAS  PubMed  Google Scholar 

  83. Lu T, Hano H . Identification of minimal regions of deletion at 8p23.1-22 associated with metastasis of hepatocellular carcinoma. Liver Int 2007; 27: 782–790.

    Article  CAS  PubMed  Google Scholar 

  84. Catts VS, Catts SV . Apoptosis and schizophrenia: is the tumour suppressor gene, p53, a candidate susceptibility gene? Schizophr Res 2000; 41: 405–415.

    Article  CAS  PubMed  Google Scholar 

  85. Jablensky A, Lawrence D . Schizophrenia and cancer: is there a need to invoke a protective gene? Arch Gen Psychiatry 2001; 58: 579–580.

    Article  CAS  PubMed  Google Scholar 

  86. Grinshpoon A, Barchana M, Ponizovsky A, Lipshitz I, Nahon D, Tal O et al. Cancer in schizophrenia: is the risk higher or lower? Schizophr Res 2005; 73: 333–341.

    Article  PubMed  Google Scholar 

  87. Lichtermann D, Ekelund J, Pukkala E, Tanskanen A, Lönnqvist J . Incidence of cancer among persons with schizophrenia and their relatives. Arch Gen Psychiatry 2001; 58: 573–578.

    Article  CAS  PubMed  Google Scholar 

  88. Levav I, Lipshitz I, Novikov I, Pugachova I, Kohn R, Barchana M et al. Cancer risk among parents and siblings of patients with schizophrenia. Br J Psychiatry 2007; 190: 156–161.

    Article  CAS  PubMed  Google Scholar 

  89. Catts VS, Catts SV, O'Toole BI, Frost AD . Cancer incidence in patients with schizophrenia and their first-degree relatives—a meta-analysis. Acta Psychiatr Scand 2008; 117: 323–336.

    Article  CAS  PubMed  Google Scholar 

  90. Torrey EF . Prostate cancer and schizophrenia. Urology 2006; 68: 1280–1283.

    Article  PubMed  Google Scholar 

  91. Barak Y, Levy T, Achiron A, Aizenberg D . Breast cancer in women suffering from serious mental illness. Schizophr Res 2008; 102: 249–253.

    Article  PubMed  Google Scholar 

  92. Preti A . Reduced risk of cancer in schizophrenia: a role for obstetric complications? Acta Psychiatr Scand 2008; 118: 251–253; [E-pub ahead of print].

    Article  PubMed  Google Scholar 

  93. Wiznitzer M . Autism and tuberous sclerosis. J Child Neurol 2004; 19: 675–679.

    Article  PubMed  Google Scholar 

  94. Marcotte L, Crino PB . The neurobiology of the tuberous sclerosis complex. Neuromolecular Med 2006; 8: 531–546.

    Article  CAS  PubMed  Google Scholar 

  95. Laursen TM, Munk-Olsen T, Nordentoft M, Mortensen PB . Increased mortality among patients admitted with major psychiatric disorders: a register-based study comparing mortality in unipolar depressive disorder, bipolar affective disorder, schizoaffective disorder, and schizophrenia. J Clin Psychiatry 2007; 68: 899–907.

    Article  PubMed  Google Scholar 

  96. Carney CP, Jones LE . Medical comorbidity in women and men with bipolar disorders: a population-based controlled study. Psychosom Med 2006; 68: 684–691.

    Article  PubMed  Google Scholar 

  97. BarChana M, Levav I, Lipshitz I, Pugachova I, Kohn R, Weizman A et al. Enhanced cancer risk among patients with bipolar disorder. J Affect Disord 2008; 108: 43–48.

    Article  PubMed  Google Scholar 

  98. Brzustowicz LM, Honer WG, Chow EW, Little D, Hogan J, Hodgkinson K et al. Linkage of familial schizophrenia to chromosome 13q32. Am J Hum Genet 1999; 65: 1096–1103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Kaufmann CA, Suarez B, Malaspina D, Pepple J, Svrakic D, Markel PD et al. NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. Am J Med Genet 1998; 81: 282–289.

    Article  CAS  PubMed  Google Scholar 

  101. Macgregor S, Visscher PM, Knott SA, Thomson P, Porteous DJ, Millar JK et al. A genome scan and follow-up study identify a bipolar disorder susceptibility locus on chromosome 1q42. Mol Psychiatry 2004; 9: 1083–1090.

    Article  CAS  PubMed  Google Scholar 

  102. Badner JA, Gershon ES . Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002; 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  103. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Hovatta I, Lichtermann D, Juvonen H, Suvisaari J, Terwilliger JD, Arajärvi R et al. Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p and 22q in a population-based sampled Finnish family set. Mol Psychiatry 1998; 3: 452–457.

    Article  CAS  PubMed  Google Scholar 

  105. Kendler KS, MacLean CJ, Ma Y, O'Neill FA, Walsh D, Straub RE . Marker-to-marker linkage disequilibrium on chromosomes 5q, 6p, and 8p in Irish high-density schizophrenia pedigrees. Am J Med Genet 1999; 88: 29–33.

    Article  CAS  PubMed  Google Scholar 

  106. Chiu YF, McGrath JA, Thornquist MH, Wolyniec PS, Nestadt G, Swartz KL et al. Genetic heterogeneity in schizophrenia II: conditional analyses of affected schizophrenia sibling pairs provide evidence for an interaction between markers on chromosome 8p and 14q. Mol Psychiatry 2002; 7: 658–664.

    Article  CAS  PubMed  Google Scholar 

  107. Maziade M, Roy MA, Rouillard E, Bissonnette L, Fournier JP, Roy A et al. A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: a linkage study in 13 target chromosomes. Mol Psychiatry 2001; 6: 684–693.

    Article  CAS  PubMed  Google Scholar 

  108. Cichon S, Schumacher J, MĂ¼ller DJ, HĂ¼rter M, Windemuth C, Strauch K et al. A genome screen for genes predisposing to bipolar affective disorder detects a new susceptibility locus on 8q. Hum Mol Genet 2001; 10: 2933–2944.

    Article  CAS  PubMed  Google Scholar 

  109. Ophoff RA, Escamilla MA, Service SK, Spesny M, Meshi DB, Poon W et al. Genomewide linkage disequilibrium mapping of severe bipolar disorder in a population isolate. Am J Hum Genet 2002; 71: 565–574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Segurado R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger Jr JI et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: Bipolar disorder. Am J Hum Genet 2003; 73: 49–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 2003; 73: 107–114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Park N, Juo SH, Cheng R, Liu J, Loth JE, Lilliston B et al. Linkage analysis of psychosis in bipolar pedigrees suggests novel putative loci for bipolar disorder and shared susceptibility with schizophrenia. Mol Psychiatry 2004; 9: 1091–1099.

    Article  CAS  PubMed  Google Scholar 

  113. Walss-Bass C, Montero AP, Armas R, Dassori A, Contreras SA, Liu W et al. Linkage disequilibrium analyses in the Costa Rican population suggests discrete gene loci for schizophrenia at 8p23.1 and 8q13.3. Psychiatr Genet 2006; 16: 159–168.

    Article  PubMed  Google Scholar 

  114. Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R et al. Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 2006; 11: 252–260.

    Article  CAS  PubMed  Google Scholar 

  115. Zubenko GS, Maher B, Hughes III HB, Zubenko WN, Stiffler JS, Kaplan BB et al. Genome-wide linkage survey for genetic loci that influence the development of depressive disorders in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 2003; 123: 1–18.

    Article  Google Scholar 

  116. Zubenko GS, Maher BS, Hughes III HB, Zubenko WN, Scott Stiffler J, Marazita ML . Genome-wide linkage survey for genetic loci that affect the risk of suicide attempts in families with recurrent, early-onset, major depression. Am J Med Genet B Neuropsychiatr Genet 2004; 129: 47–54.

    Article  Google Scholar 

  117. Holmans P, Weissman MM, Zubenko GS, Scheftner WA, Crowe RR, Depaulo Jr JR et al. Genetics of recurrent early-onset major depression (GenRED): final genome scan report. Am J Psychiatry 2007; 164: 248–258.

    Article  PubMed  Google Scholar 

  118. Symons FJ, Sperry LA, Dropik PL, Bodfish JW . The early development of stereotypy and self-injury: a review of research methods. J Intellect Disabil Res 2005; 49: 144–158.

    Article  CAS  PubMed  Google Scholar 

  119. Lieberman MD . Social cognitive neuroscience: a review of core processes. Annu Rev Psychol 2007; 58: 259–289.

    Article  PubMed  Google Scholar 

  120. Loo SK, Fisher SE, Francks C, Ogdie MN, MacPhie IL, Yang M et al. Genome-wide scan of reading ability in affected sibling pairs with attention-deficit/hyperactivity disorder: unique and shared genetic effects. Mol Psychiatry 2004; 9: 485–493.

    Article  CAS  PubMed  Google Scholar 

  121. Cloninger CR, Van Eerdewegh P, Goate A, Edenberg HJ, Blangero J, Hesselbrock V et al. Anxiety proneness linked to epistatic loci in genome scan of human personality traits. Am J Med Genet 1998; 81: 313–317.

    Article  CAS  PubMed  Google Scholar 

  122. Fullerton J, Cubin M, Tiwari H, Wang C, Bomhra A, Davidson S et al. Linkage analysis of extremely discordant and concordant sibling pairs identifies quantitative-trait Loci that influence variation in the human personality trait neuroticism. Am J Hum Genet 2003; 72: 879–890.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Dina C, Nemanov L, Gritsenko I, Rosolio N, Osher Y, Heresco-Levy U et al. Fine mapping of a region on chromosome 8p gives evidence for a QTL contributing to individual differences in an anxiety-related personality trait: TPQ harm avoidance. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 104–108.

    Article  Google Scholar 

  124. Ashley-Koch AE, Shao Y, Rimmler JB, Gaskell PC, Welsh-Bohmer KA, Jackson CE et al. An autosomal genomic screen for dementia in an extended Amish family. Neurosci Lett 2005; 379: 199–204.

    Article  CAS  PubMed  Google Scholar 

  125. Go RC, Perry RT, Wiener H, Bassett SS, Blacker D, Devlin B et al. Neuregulin-1 polymorphism in late onset Alzheimer's disease families with psychoses. Am J Med Genet B Neuropsychiatr Genet 2005; 139: 28–32.

    Article  CAS  Google Scholar 

  126. Scott WK, Nance MA, Watts RL, Hubble JP, Koller WC, Lyons K et al. Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA 200; 286: 2239–2244.

    Article  Google Scholar 

  127. Schellenberg GD, Dawson G, Sung YJ, Estes A, Munson J, Rosenthal E et al. Evidence for multiple loci from a genome scan of autism kindreds. Mol Psychiatry 2006; 11: 1049–1060, 1 979.

    Article  CAS  PubMed  Google Scholar 

  128. Allen-Brady K, Miller J, Matsunami N, Stevens J, Block H, Farley M et al. A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol Psychiatry 2008. [E-pub ahead of print] doi: 10.1038/mp.2008.14.

    Article  CAS  PubMed  Google Scholar 

  129. Spence SJ, Cantor RM, Chung L, Kim S, Geschwind DH, AlarcĂ³n M . Stratification based on language-related endophenotypes in autism: attempt to replicate reported linkage. Am J Med Genet B Neuropsychiatr Genet 2006; 141: 591–598.

    Article  Google Scholar 

  130. Kraepelin E . Dementia Praecox and Paraphrenia (1919), Translated by Barclay RM, Robertson GM (ed). Robert E Krieger: New York, 1971.

    Google Scholar 

  131. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN . Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–182.

    Article  CAS  PubMed  Google Scholar 

  132. Touma E, Kato S, Fukui K, Koike T . Calpain-mediated cleavage of collapsin response mediator protein (CRMP)-2 during neurite degeneration in mice. Eur J Neurosci 2007; 26: 3368–3381.

    Article  PubMed  Google Scholar 

  133. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K . GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 2005; 120: 137–149.

    Article  CAS  PubMed  Google Scholar 

  134. Edgar PF, Douglas JE, Cooper GJ, Dean B, Kydd R, Faull RL . Comparative proteome analysis of the hippocampus implicates chromosome 6q in schizophrenia. Mol Psychiatry 2000; 5: 85–90.

    Article  CAS  PubMed  Google Scholar 

  135. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF et al. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 2000; 5: 142–149.

    Article  CAS  PubMed  Google Scholar 

  136. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D . Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes. Proteomics 2006; 6: 3414–3425.

    Article  CAS  PubMed  Google Scholar 

  137. Zhao X, Tang R, Xiao Z, Shi Y, Feng G, Gu N et al. An investigation of the dihydropyrimidinase-like 2 (DPYSL2) gene in schizophrenia: genetic association study and expression analysis. Int J Neuropsychopharmacol 2006; 9: 705–712.

    Article  CAS  PubMed  Google Scholar 

  138. Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB, Merchant M et al. Proteomics analysis of the Alzheimer's disease hippocampal proteome. J Alzheimers Dis 2007; 11: 153–164.

    Article  CAS  PubMed  Google Scholar 

  139. Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, Fountoulakis M . Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 1999; 57: 161–177.

    CAS  PubMed  Google Scholar 

  140. Weitzdoerfer R, Fountoulakis M, Lubec G . Aberrant expression of dihydropyrimidinase related proteins-2, -3 and -4 in fetal Down syndrome brain. J Neural Transm Suppl 2001; 61: 95–107.

    Google Scholar 

  141. Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y et al. The human dihydropyrimidinase-related protein 2 gene on chromosome 8p21 is associated with paranoid-type schizophrenia. Biol Psychiatry 2003; 53: 571–576.

    Article  CAS  PubMed  Google Scholar 

  142. Hong LE, Wonodi I, Avila MT, Buchanan RW, McMahon RP, Mitchell BD et al. Dihydropyrimidinase-related protein 2 (DRP-2) gene and association to deficit and nondeficit schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2005; 136: 8–11.

    Article  Google Scholar 

  143. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA et al. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 2005; 77: 918–936.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Nakata K, Ujike H, Tanaka Y, Takaki M, Sakai A, Nomura A et al. No association between the dihydropyrimidinase-related protein 2 (DRP-2) gene and bipolar disorder in humans. Neurosci Lett 2003; 349: 171–174.

    Article  CAS  PubMed  Google Scholar 

  145. Ujike H, Sakai A, Nakata K, Tanaka Y, Kodaka T, Okahisa Y et al. Association study of the dihydropyrimidinase-related protein 2 gene and methamphetamine psychosis. Ann N Y Acad Sci 2006; 1074: 90–96.

    Article  CAS  PubMed  Google Scholar 

  146. Carrette O, Burgess JA, Burkhard PR, Lang C, Côte M, Rodrigo N et al. Changes of the cortex proteome and Apolipoprotein E in transgenic mouse models of Alzheimer's Disease. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 840: 1–9.

    Article  CAS  PubMed  Google Scholar 

  147. Bisgaard CF, Jayatissa MN, Enghild JJ, Sanchéz C, Artemychyn R, Wiborg O . Proteomic investigation of the ventral rat hippocampus links DRP-2 to escitalopram treatment resistance and SNAP to stress resilience in the chronic mild stress model of depression. J Mol Neurosci 2007; 32: 132–144.

    Article  CAS  PubMed  Google Scholar 

  148. Henderson MJ, Ward K, Simmonds HA, Duley JA, Davies PM . Dihydropyrimidinase deficiency presenting in infancy with severe developmental delay. J Inherit Metab Dis 1993; 16: 574–576.

    Article  CAS  PubMed  Google Scholar 

  149. Putman CW, Rotteveel JJ, Wevers RA, van Gennip AH, Bakkeren JA, De Abreu RA . Dihydropyrimidinase deficiency, a progressive neurological disorder? Neuropediatrics 1997; 28: 106–110.

    Article  CAS  PubMed  Google Scholar 

  150. Goulet AC, Watts G, Lord JL, Nelson MA . Profiling of selenomethionine responsive genes in colon cancer by microarray analysis. Cancer Biol Ther 2007; 6: 494–503.

    Article  CAS  PubMed  Google Scholar 

  151. Roberts DS, Raol YH, Bandyopadhyay S, Lund IV, Budreck EC, Passini MA et al. Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABA(A) receptor alpha4 subunit expression. Proc Natl Acad Sci USA 2005; 102: 11894–11899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T et al. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci USA 2007; 104: 2815–2820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mexal S, Frank M, Berger R, Adams CE, Ross RG, Freedman R et al. Differential modulation of gene expression in the NMDA postsynaptic density of schizophrenic and control smokers. Brain Res Mol Brain Res 2005; 139: 317–332.

    Article  CAS  PubMed  Google Scholar 

  154. Roberts DS, Hu Y, Lund IV, Brooks-Kayal AR, Russek SJ . Brain-derived neurotrophic factor (BDNF)-induced synthesis of early growth response factor 3 (Egr3) controls the levels of type A GABA receptor alpha 4 subunits in hippocampal neurons. J Biol Chem 2006; 281: 29431–29435.

    Article  CAS  PubMed  Google Scholar 

  155. Gallitano-Mendel A, Izumi Y, Tokuda K, Zorumski CF, Howell MP, Muglia LJ et al. The immediate early gene early growth response gene 3 mediates adaptation to stress and novelty. Neuroscience 2007; 148: 633–643.

    Article  CAS  PubMed  Google Scholar 

  156. Gallitano-Mendel A, Wozniak DF, Pehek EA, Milbrandt J . Mice lacking the immediate early gene Egr3 respond to the anti-aggressive effects of clozapine yet are relatively resistant to its sedating effects. Neuropsychopharmacology 2008; 33: 1266–1275.

    Article  CAS  PubMed  Google Scholar 

  157. Suzuki T, Inoue A, Miki Y, Moriya T, Akahira J, Ishida T et al. Early growth responsive gene 3 in human breast carcinoma: a regulator of estrogen-meditated invasion and a potent prognostic factor. Endocr Relat Cancer 2007; 14: 279–292.

    Article  CAS  PubMed  Google Scholar 

  158. Dailey L, Ambrosetti D, Mansukhani A, Basilico C . Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005; 16: 233–247.

    Article  CAS  PubMed  Google Scholar 

  159. Basson MA, Echevarria D, Ahn CP, Sudarov A, Joyner AL, Mason IJ et al. Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development 2008; 135: 889–898.

    Article  CAS  PubMed  Google Scholar 

  160. Shin DM, Korada S, Raballo R, Shashikant CS, Simeone A, Taylor JR et al. Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. J Neurosci 2004; 24: 2247–2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Satake W, Mizuta I, Suzuki S, Nakabayashi Y, Ito C, Watanabe M et al. Fibroblast growth factor 20 gene and Parkinson's disease in the Japanese population. Neuroreport 2007; 18: 937–940.

    Article  CAS  PubMed  Google Scholar 

  162. Van der Walt JM, Noureddine MA, Kittappa R, Hauser MA, Scott WK, McKay R et al. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet 2004; 74: 1121–1127.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  163. Gao X, Scott WK, Wang G, Mayhew G, Li YJ, Vance JM et al. Gene-gene interaction between FGF20 and MAOB in Parkinson disease. Ann Hum Genet 2008; 72: 157–162.

    Article  CAS  PubMed  Google Scholar 

  164. Wang G, Van der Walt JM, Mayhew G, Li YJ, ZĂ¼chner S, Scott WK et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 2008; 82: 283–289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Clarimon J, Xiromerisiou G, Eerola J, Gourbali V, Hellström O, Dardiotis E et al. Lack of evidence for a genetic association between FGF20 and Parkinson's disease in Finnish and Greek patients. BMC Neurol 2005; 5: 11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Fung HC, Scholz S, Matarin M, SimĂ³n-SĂ¡nchez J, Hernandez D, Britton A et al. Genome-wide genotyping in Parkinson's disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 2006; 5: 911–916.

    Article  CAS  PubMed  Google Scholar 

  167. Jungerius BJ, Hoogendoorn ML, Bakker SC, Van't Slot R, Bardoel AF, Ophoff RA et al. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia. Mol Psychiatry 2007; 13: 1060–1068.

    Article  CAS  PubMed  Google Scholar 

  168. Murase S, McKay RD . A specific survival response in dopamine neurons at most risk in Parkinson's disease. J Neurosci 2006; 26: 9750–9760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Grose R, Dickson C . Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 2005; 16: 179–186.

    Article  CAS  PubMed  Google Scholar 

  170. Itoh N . The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 2007; 30: 1819–1825.

    Article  CAS  PubMed  Google Scholar 

  171. Croce CM . Oncogenes and cancer. N Engl J Med 2008; 358: 502–511.

    Article  CAS  PubMed  Google Scholar 

  172. Katoh M . Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 2007; 3: 30–38.

    Article  CAS  PubMed  Google Scholar 

  173. Deardorff MA, Tan C, Saint-Jeannet JP, Klein PS . A role for frizzled 3 in neural crest development. Development 2001; 128: 3655–3663.

    CAS  PubMed  Google Scholar 

  174. Bovolenta P, Rodriguez J, Esteve P . Frizzled/RYK mediated signalling in axon guidance. Development 2006; 133: 4399–4408.

    Article  CAS  PubMed  Google Scholar 

  175. Endo Y, Beauchamp E, Woods D, Taylor WG, Toretsky JA, Uren A et al. Wnt-3a and Dickkopf-1 stimulate neurite outgrowth in Ewing tumor cells via a Frizzled3- and c-Jun N-terminal kinase-dependent mechanism. Mol Cell Biol 2008; 28: 2368–2379.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S . Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 2006; 11: 965–978.

    Article  CAS  PubMed  Google Scholar 

  177. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ et al. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 2008; 14: 156–174.

    Article  CAS  PubMed  Google Scholar 

  178. Katsu T, Ujike H, Nakano T, Tanaka Y, Nomura A, Nakata K et al. The human frizzled-3 (FZD3) gene on chromosome 8p21, a receptor gene for Wnt ligands, is associated with the susceptibility to schizophrenia. Neurosci Lett 2003; 353: 53–56.

    Article  CAS  PubMed  Google Scholar 

  179. Zhang Y, Yu X, Yuan Y, Ling Y, Ruan Y, Si T et al. Positive association of the human frizzled 3 (FZD3) gene haplotype with schizophrenia in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 2004; 129: 16–19.

    Google Scholar 

  180. Yang J, Si T, Ling Y, Ruan Y, Han Y, Wang X et al. Association study of the human FZD3 locus with schizophrenia. Biol Psychiatry 2003; 54: 1298–1301.

    Article  CAS  PubMed  Google Scholar 

  181. Ide M, Muratake T, Yamada K, Iwayama-Shigeno Y, Iwamoto K, Takao H et al. Genetic and expression analyses of FZD3 in schizophrenia. Biol Psychiatry 2004; 56: 462–465.

    Article  CAS  PubMed  Google Scholar 

  182. Jeong SH, Joo EJ, Ahn YM, Lee KY, Kim YS . Investigation of genetic association between human Frizzled homolog 3 gene (FZD3) and schizophrenia: results in a Korean population and evidence from meta-analysis. Psychiatry Res 2006; 143: 1–11.

    Article  CAS  PubMed  Google Scholar 

  183. Hashimoto R, Suzuki T, Iwata N, Yamanouchi Y, Kitajima T, Kosuga A et al. Association study of the frizzled-3 (FZD3) gene with schizophrenia and mood disorders. J Neural Transm 2005; 112: 303–307.

    Article  CAS  PubMed  Google Scholar 

  184. Reif A, Melchers M, Strobel A, Jacob CP, Herterich S, Lesch KP et al. FZD3 is not a risk gene for schizophrenia: a case-control study in a Caucasian sample. J Neural Transm Suppl 2007; 72): 297–301.

    Article  Google Scholar 

  185. Wei J, Hemmings GP . Lack of a genetic association between the frizzled-3 gene and schizophrenia in a British population. Neurosci Lett 2004; 366: 336–338.

    Article  CAS  PubMed  Google Scholar 

  186. Proitsi P, Li T, Hamilton G, Di Forti M, Collier D, Killick R et al. Positional pathway screen of wnt signaling genes in schizophrenia: association with DKK4. Biol Psychiatry 2008; 63: 13–16.

    Article  CAS  PubMed  Google Scholar 

  187. Wang Y, Thekdi N, Smallwood PM, Macke JP, Nathans J . Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci 2002; 22: 8563–8573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang Y, Zhang J, Mori S, Nathans J . Axonal growth and guidance defects in Frizzled3 knockout mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J Neurosci 2006; 26: 355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Logan CY, Nusse R . The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  190. Witze ES, Litman ES, Argast GM, Moon RT, Ahn NG . Wnt5a control of cell polarity and directional movement by polarized redistribution of adhesion receptors. Science 2008; 320: 365–369.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  191. You J, Nguyen AV, Albers CG, Lin F, Holcombe RF . Wnt pathway-related gene expression in inflammatory bowel disease. Dig Dis Sci 2008; 53: 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  192. Kang G, Yue W, Zhang J, Huebner M, Zhang H, Ruan Y et al. Two-stage designs to identify the effects of SNP combinations on complex diseases. J Hum Genet 2008; 53: 739–746.

    Article  CAS  PubMed  Google Scholar 

  193. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008; 452: 429–435.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  194. Edwards DA, Zhang L, Alger BE . Metaplastic control of the endocannabinoid system at inhibitory synapses in hippocampus. Proc Natl Acad Sci USA 2008; 105: 8142–8147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. Blain JF, Aumont N, Théroux L, Dea D, Poirier J . A polymorphism in lipoprotein lipase affects the severity of Alzheimer's disease pathophysiology. Eur J Neurosci 2006; 24: 1245–1251.

    Article  PubMed  Google Scholar 

  196. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 15533–15538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Baum L, Chen L, Masliah E, Chan YS, Ng HK, Pang CP . Lipoprotein lipase mutations and Alzheimer's disease. Am J Med Genet 1999; 88: 136–139.

    Article  CAS  PubMed  Google Scholar 

  198. Baum L, Wiebusch H, Pang CP . Roles for lipoprotein lipase in Alzheimer's disease: an association study. Microsc Res Tech 2000; 50: 291–296.

    Article  CAS  PubMed  Google Scholar 

  199. Papassotiropoulos A, Wollmer MA, Tsolaki M, Brunner F, Molyva D, LĂ¼tjohann D et al. A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease. J Clin Psychiatry 2005; 66: 940–947.

    Article  CAS  PubMed  Google Scholar 

  200. Scacchi R, Gambina G, Broggio E, Moretto G, Ruggeri M, Corbo RM . The H+ allele of the lipoprotein lipase (LPL) HindIII intronic polymorphism and the risk for sporadic late-onset Alzheimer's disease. Neurosci Lett 2004; 367: 177–180.

    Article  CAS  PubMed  Google Scholar 

  201. Fidani L, Compton D, Hardy J, Petersen RC, Tangalos E, Mirtsou V et al. No association between the lipoprotein lipase S447X polymorphism and Alzheimer's disease. Neurosci Lett 2002; 322: 192–194.

    Article  CAS  PubMed  Google Scholar 

  202. Fidani L, Goulas A, Crook R, Petersen RC, Tangalos E, Kotsis A et al. An association study of the cholesteryl ester transfer protein TaqI B polymorphism with late onset Alzheimer's disease. Neurosci Lett 2004; 357: 152–154.

    Article  CAS  PubMed  Google Scholar 

  203. Myllykangas L, Polvikoski T, Sulkava R, Verkkoniemi A, Tienari P, Niinistö L et al. Cardiovascular risk factors and Alzheimer's disease: a genetic association study in a population aged 85 or over. Neurosci Lett 2000; 292: 195–198.

    Article  CAS  PubMed  Google Scholar 

  204. Martin-Rehrmann MD, Cho HS, Rebeck GW . Lack of association of two lipoprotein lipase polymorphisms with Alzheimer's disease. Neurosci Lett 2002; 328: 109–112.

    Article  CAS  PubMed  Google Scholar 

  205. Retz W, Thome J, Durany N, HarsĂ¡nyi A, Retz-Junginger P, Kornhuber J et al. Potential genetic markers of sporadic Alzheimer's dementia. Psychiatr Genet 2001; 11: 115–122.

    Article  CAS  PubMed  Google Scholar 

  206. Smith RC, Segman RH, Golcer-Dubner T, Pavlov V, Lerer B . Allelic variation in ApoC3, ApoA5 and LPL genes and first and second generation antipsychotic effects on serum lipids in patients with schizophrenia. Pharmacogenomics J 2008; 8: 228–236.

    Article  CAS  PubMed  Google Scholar 

  207. Yamamoto K, Fukuda M, Nogawa A, Takahashi E, Miyaoka H . Decreased lipoprotein lipase as a risk factor for atypical neuroleptic-induced hypertriglyceridemia. J Clin Psychiatry 2007; 68: 802.

    Article  PubMed  Google Scholar 

  208. Kostomarov IV, Vodolagina NN, Malygina NA, Mitina ZS . The relation between gene of lipoprotein-lipase and carrier protein of cholesterol ethers and life duration in patients with chronic cerebral ischemia. Klin Med (Mosk) 2008; 86: 22–26.

    CAS  Google Scholar 

  209. Thomassen M, Tan Q, Kruse TA . Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. Breast Cancer Res Treat 2009; 113: 239–249. [Epub ahead of print] doi: 10.1007/s10549-008-9927-2.

    Article  PubMed  Google Scholar 

  210. Sun Q, Zhang Y, Liu F, Zhao X, Yang X . Identification of candidate biomarkers for hepatocellular carcinoma through pre-cancerous expression analysis in an HBx transgenic mouse. Cancer Biol Ther 2007; 6: 1532–1538.

    Article  CAS  PubMed  Google Scholar 

  211. Gallucci M, Merola R, Leonardo C, De Carli P, Farsetti A, Sentinelli S et al. Genetic profile identification in clinically localized prostate carcinoma. Urol Oncol 2008; doi:10.1016/j.urolonc.2008.04.008.

    Article  CAS  PubMed  Google Scholar 

  212. Saiz PA, Garcia-Portilla MP, Arango C, Morales B, Alvarez V et al. N-acetyltransferase-2 polymorphisms and schizophrenia. Eur Psychiatry 2006; 21: 333–337.

    Article  PubMed  Google Scholar 

  213. Rocha L, Garcia C, de Mendonça A, Gil JP, Bishop DT, Lechner MC . N-acetyltransferase (NAT2) genotype and susceptibility of sporadic Alzheimer's disease. Pharmacogenetics 1999; 9: 9–15.

    Article  CAS  PubMed  Google Scholar 

  214. Guo WC, Lin GF, Zha YL, Lou KJ, Ma QW, Shen JH . N-Acetyltransferase 2 gene polymorphism in a group of senile dementia patients in Shanghai suburb. Acta Pharmacol Sin 2004; 25: 1112–1127.

    CAS  PubMed  Google Scholar 

  215. Bandmann O, Vaughan J, Holmans P, Marsden CD, Wood NW . Association of slow acetylator genotype for N-acetyltransferase 2 with familial Parkinson's disease. Lancet 1997; 350: 1136–1139.

    Article  CAS  PubMed  Google Scholar 

  216. AgĂºndez JA, JimĂ©nez-JimĂ©nez FJ, Luengo A, Molina JA, OrtĂ­-Pareja M, VĂ¡zquez A et al. Slow allotypic variants of the NAT2 gene and susceptibility to early-onset Parkinson's disease. Neurology 1998; 51: 1587–1592.

    Article  PubMed  Google Scholar 

  217. Bandmann O, Vaughan JR, Holmans P, Marsden CD, Wood NW . Detailed genotyping demonstrates association between the slow acetylator genotype for N-acetyltransferase 2 (NAT2) and familial Parkinson's disease. Mov Disord 2000; 15: 30–35.

    Article  CAS  PubMed  Google Scholar 

  218. Nicholl DJ, Bennett P, Hiller L, Bonifati V, Vanacore N, Fabbrini G et al. A study of five candidate genes in Parkinson's disease and related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. Neurology 1999; 53: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  219. Bialecka M, Gawronska-Szklarz B, Drozdzik M, Honczarenko K, Stankiewicz J . N-acetyltransferase 2 polymorphism in sporadic Parkinson's disease in a Polish population. Eur J Clin Pharmacol 2002; 57: 857–862.

    Article  CAS  PubMed  Google Scholar 

  220. Maraganore DM, Farrer MJ, Hardy JA, McDonnell SK, Schaid DJ, Rocca WA . Case-control study of debrisoquine 4-hydroxylase, N-acetyltransferase 2, and apolipoprotein E gene polymorphisms in Parkinson's disease. Mov Disord 2000; 15: 714–719.

    Article  CAS  PubMed  Google Scholar 

  221. Chan DK, Lam MK, Wong R, Hung WT, Wilcken DE . Strong association between N-acetyltransferase 2 genotype and PD in Hong Kong Chinese. Neurology 2003; 60: 1002–1005.

    Article  CAS  PubMed  Google Scholar 

  222. Chaudhary S, Behari M, Dihana M, Swaminath PV, Govindappa ST, Jayaram S et al. Association of N-acetyl transferase 2 gene polymorphism and slow acetylator phenotype with young onset and late onset Parkinson's disease among Indians. Pharmacogenet Genomics 2005; 15: 731–735.

    Article  CAS  PubMed  Google Scholar 

  223. Ladero JM, Barquero MS, Coria F, Molina JA, Jiménez-Jiménez FJ, Benítez J . Acetylator polymorphism in Alzheimer's disease. Eur J Med 1993; 2: 281–283.

    CAS  PubMed  Google Scholar 

  224. Nicholl DJ, Bennett P, Hiller L, Bonifati V, Vanacore N, Fabbrini G et al. A study of five candidate genes in Parkinson's disease and related neurodegenerative disorders. European Study Group on Atypical Parkinsonism. Neurology 1999; 53: 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  225. Johnson N, Bell P, Jonovska V, Budge M, Sim E . NAT gene polymorphisms and susceptibility to Alzheimer's disease: identification of a novel NAT1 allelic variant. BMC Med Genet 2004; 5: 6.

    Article  PubMed Central  PubMed  Google Scholar 

  226. Golab-Janowska M, Honczarenko K, Gawronska-Szklarz B, Potemkowski A . The role of NAT2 gene polymorphism in aetiology of the most frequent neurodegenerative diseases with dementia. Neurol Neurochir Pol 2007; 41: 388–394.

    PubMed  Google Scholar 

  227. Ladero JM, Jimenez FJ, Benitez J, Fernandez-Gundin MJ, Martinez C, Llerena A et al. Acetylator polymorphism in Parkinson's disease. Eur J Clin Pharmacol 1989; 37: 391–393.

    Article  CAS  PubMed  Google Scholar 

  228. Dupret JM, Longuemaux S, Lucotte G . Acetylator genotype for N-acetyltransferase 2 and Parkinson's disease. Ann Neurol 1999; 46: 433–434.

    Article  CAS  PubMed  Google Scholar 

  229. Harhangi BS, Oostra BA, Heutink P, van Duijn CM, Hofman A, Breteler MM . N-acetyltransferase-2 polymorphism in Parkinson's disease: the Rotterdam study. J Neurol Neurosurg Psychiatry 1999; 67: 518–520.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  230. Igbokwe E, Ogunniyi AO, Osuntokun BO . Xenobiotic metabolism in idiopathic Parkinson's disease in Nigerian Africans. East Afr Med J 1993; 70: 807–809.

    CAS  PubMed  Google Scholar 

  231. Borlak J, Reamon-Buettner SM . N-acetyltransferase 2 (NAT2) gene polymorphisms in Parkinson's disease. BMC Med Genet 2006; 7: 30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  232. Bialecka M, Klodowska-Duda G, Honczarenko K, Gawroñska-Szklarz B, Opala G, Safranow K et al. Polymorphisms of catechol-0-methyltransferase (COMT), monoamine oxidase B (MAOB), N-acetyltransferase 2 (NAT2) and cytochrome P450 2D6 (CYP2D6) gene in patients with early onset of Parkinson's disease. Parkinsonism Relat Disord 2007; 13: 224–229.

    Article  CAS  PubMed  Google Scholar 

  233. Van der Walt JM, Martin ER, Scott WK, Zhang F, Nance MA, Watts RL et al. Genetic polymorphisms of the N-acetyltransferase genes and risk of Parkinson's disease. Neurology 2003; 60: 1189–1191.

    Article  CAS  PubMed  Google Scholar 

  234. Cooper GS, Treadwell EL, Dooley MA, St Clair EW, Gilkeson GS, Taylor JA . N-acetyl transferase genotypes in relation to risk of developing systemic lupus erythematosus. J Rheumatol 2004; 31: 76–80.

    CAS  PubMed  Google Scholar 

  235. Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U . Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 2008; 299: 2423–2436.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  236. Liu HE, Hsiao PY, Lee CC, Lee JA, Chen HY . NAT2*7 allele is a potential risk factor for adult brain tumors in Taiwanese population. Cancer Epidemiol Biomarkers Prev 2008; 17: 661–665.

    Article  CAS  PubMed  Google Scholar 

  237. Corfas G, Roy K, Buxbaum JD . Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 2004; 7: 575–580.

    Article  CAS  PubMed  Google Scholar 

  238. LĂ³pez-Bendito G, Cautinat A, SĂ¡nchez JA, Bielle F, Flames N, Garratt AN et al. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 2006; 125: 127–142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  239. Mei L, Xiong WC . Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008; 9: 437–452.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  240. McIntosh AM, Moorhead TW, Job D, Lymer GK, Muñoz Maniega S, McKirdy J et al. The effects of a neuregulin 1 variant on white matter density and integrity. Mol Psychiatry 2007; 13: 1054–1059.

    Article  CAS  PubMed  Google Scholar 

  241. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR . Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2004; 9: 299–307.

    Article  CAS  PubMed  Google Scholar 

  242. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proc Natl Acad Sci USA 2006; 103: 6747–6752.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  243. Chong VZ, Thompson M, Beltaifa S, Webster MJ, Law AJ, Weickert CS . Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophr Res 2008; 100: 270–280.

    Article  PubMed Central  PubMed  Google Scholar 

  244. Hahn CG, Wang HY, Cho DS, Talbot K, Gur RE, Berrettini WH et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nat Med 2006; 12: 824–828.

    Article  CAS  PubMed  Google Scholar 

  245. Petryshen TL, Middleton FA, Kirby A, Aldinger KA, Purcell S, Tahl AR et al. Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Mol Psychiatry 2005; 10: 366–374, 328.

    Article  CAS  PubMed  Google Scholar 

  246. Zhang HX, Zhao JP, Lv LX, Li WQ, Xu L, Ouyang X et al. Explorative study on the expression of neuregulin-1 gene in peripheral blood of schizophrenia. Neurosci Lett 2008; 438: 1–5.

    Article  CAS  PubMed  Google Scholar 

  247. Chagnon YC, Roy MA, Bureau A, Mérette C, Maziade M . Differential RNA expression between schizophrenic patients and controls of the dystrobrevin binding protein 1 and neuregulin 1 genes in immortalized lymphocytes. Schizophr Res 2008; 100: 281–290.

    Article  CAS  PubMed  Google Scholar 

  248. Bertram I, Bernstein HG, Lendeckel U, Bukowska A, Dobrowolny H, Keilhoff G et al. Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression. Ann N Y Acad Sci 2007; 1096: 147–156.

    Article  CAS  PubMed  Google Scholar 

  249. Green EK, Raybould R, Macgregor S, Gordon-Smith K, Heron J, Hyde S et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch Gen Psychiatry 2005; 62: 642–648.

    Article  CAS  PubMed  Google Scholar 

  250. Thomson PA, Christoforou A, Morris SW, Adie E, Pickard BS, Porteous DJ et al. Association of Neuregulin 1 with schizophrenia and bipolar disorder in a second cohort from the Scottish population. Mol Psychiatry 2007; 12: 94–104.

    Article  CAS  PubMed  Google Scholar 

  251. Georgieva L, Dimitrova A, Ivanov D, Nikolov I, Williams NM, Grozeva D et al. Support for Neuregulin 1 as a Susceptibility Gene for Bipolar Disorder and Schizophrenia. Biol Psychiatry 2008; 64: 419–427.

    Article  CAS  PubMed  Google Scholar 

  252. Cassidy F, Roche S, Claffey E, McKeon P . First family-based test for association of neuregulin with bipolar affective disorder. Mol Psychiatry 2006; 11: 706–707.

    Article  CAS  PubMed  Google Scholar 

  253. Perlis RH, Purcell S, Fagerness J, Kirby A, Petryshen TL, Fan J et al. Family-based association study of lithium-related and other candidate genes in bipolar disorder. Arch Gen Psychiatry 2008; 65: 53–61.

    Article  PubMed  Google Scholar 

  254. McInnes LA, Ouchanov L, Nakamine A, Jimenez P, Esquivel M, Fallas M et al. The NRG1 exon 11 missense variant is not associated with autism in the Central Valley of Costa Rica. BMC Psychiatry 2007; 7: 21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  255. Gruber O, Falkai P, Schneider-Axmann T, Schwab SG, Wagner M, Maier W . Neuregulin-1 haplotype HAP (ICE) is associated with lower hippocampal volumes in schizophrenic patients and in non-affected family members. J Psychiatr Res 2008; 43: 1–6.

    Article  PubMed  Google Scholar 

  256. Addington AM, Gornick MC, Shaw P, Seal J, Gogtay N, Greenstein D et al. Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol Psychiatry 2007; 12: 195–205.

    Article  CAS  PubMed  Google Scholar 

  257. Hall J, Whalley HC, Job DE, Baig BJ, McIntosh AM, Evans KL et al. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci 2006; 9: 1477–1478.

    Article  CAS  PubMed  Google Scholar 

  258. Walss-Bass C, Raventos H, Montero AP, Armas R, Dassori A, Contreras S et al. Association analyses of the neuregulin 1 gene with schizophrenia and manic psychosis in a Hispanic population. Acta Psychiatr Scand 2006; 113: 314–321.

    Article  CAS  PubMed  Google Scholar 

  259. O'Tuathaigh CM, O'Connor AM, O'Sullivan GJ, Lai D, Harvey R et al. Disruption to social dyadic interactions but not emotional/anxiety-related behaviour in mice with heterozygous ‘knockout’ of the schizophrenia risk gene neuregulin-1. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 462–466.

    Article  CAS  PubMed  Google Scholar 

  260. Tsai MS, Shamon-Taylor LA, Mehmi I, Tang CK, Lupu R . Blockage of heregulin expression inhibits tumorigenicity and metastasis of breast cancer. Oncogene 2003; 22: 761–768.

    Article  CAS  PubMed  Google Scholar 

  261. Frensing T, Kaltschmidt C, Schmitt-John T . Characterization of a neuregulin-1 gene promoter: positive regulation of type I isoforms by NF-kappaB. Biochim Biophys Acta 2008; 1779: 139–144.

    Article  CAS  PubMed  Google Scholar 

  262. Li D, Collier DA, He L . Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet 2006; 15: 1995–2002.

    Article  CAS  PubMed  Google Scholar 

  263. MunafĂ² MR, Thiselton DL, Clark TG, Flint J . Association of the NRG1 gene and schizophrenia: a meta-analysis. Mol Psychiatry 2006; 11: 539–546.

    Article  CAS  PubMed  Google Scholar 

  264. MunafĂ² MR, Attwood AS, Flint J . Neuregulin 1 genotype and schizophrenia. Schizophr Bull 2008; 34: 9–12.

    Article  PubMed  Google Scholar 

  265. Eastwood SL, Salih T, Harrison PJ . Differential expression of calcineurin A subunit mRNA isoforms during rat hippocampal and cerebellar development. Eur J Neurosci 2005; 22: 3017–3024.

    Article  PubMed  Google Scholar 

  266. Xia Z, Storm DR . The role of calmodulin as a signal integrator for synaptic plasticity. Nat Rev Neurosci 2005; 6: 267–276.

    Article  CAS  PubMed  Google Scholar 

  267. Wu HY, Tomizawa K, Oda Y, Wei FY, Lu YF, Matsushita M et al. Critical role of calpain-mediated cleavage of calcineurin in excitotoxic neurodegeneration. J Biol Chem 2004; 279: 4929–4940.

    Article  CAS  PubMed  Google Scholar 

  268. Anantharam V, Lehrmann E, Kanthasamy A, Yang Y, Banerjee P, Becker KG et al. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson's disease. Neurochem Int 2007; 50: 834–847.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  269. Eastwood SL, Burnet PW, Harrison PJ . Decreased hippocampal expression of the susceptibility gene PPP3CC and other calcineurin subunits in schizophrenia. Biol Psychiatry 2005; 57: 702–710.

    Article  CAS  PubMed  Google Scholar 

  270. Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T et al. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci USA 2007; 104: 2815–2820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Kozlovsky N, Scarr E, Dean B, Agam G . Postmortem brain calcineurin protein levels in schizophrenia patients are not different from controls. Schizophr Res 2006; 83: 173–177.

    Article  PubMed  Google Scholar 

  272. Murata M, Tsunoda M, Sumiyoshi T, Sumiyoshi C, Matsuoka T, Suzuki M et al. Calcineurin A gamma and B gene expressions in the whole blood in Japanese patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1000–1004.

    Article  CAS  PubMed  Google Scholar 

  273. Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA 2003; 100: 8993–8998.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N et al. Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatry 2007; 12: 891–893.

    Article  CAS  PubMed  Google Scholar 

  275. Liu YL, Fann CS, Liu CM, Chang CC, Yang WC, Hung SI et al. More evidence supports the association of PPP3CC with schizophrenia. Mol Psychiatry 2007; 12: 966–974.

    Article  CAS  PubMed  Google Scholar 

  276. Mathieu F, Miot S, Etain B, El Khoury MA, Chevalier F, Bellivier F et al. Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder. Behav Brain Funct 2008; 4: 2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  277. Kinoshita Y, Suzuki T, Ikeda M, Kitajima T, Yamanouchi Y, Inada T et al. No association with the calcineurin A gamma subunit gene (PPP3CC) haplotype to Japanese schizophrenia. J Neural Transm 2005; 112: 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  278. Xi Z, Yu L, Shi Y, Zhang J, Zheng Y, He G et al. No association between PPP3CC and schizophrenia in the Chinese population. Schizophr Res 2007; 90: 357–359.

    Article  PubMed  Google Scholar 

  279. Sanders AR, Duan J, Levinson DF, Shi J, He D, Hou C et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics. Am J Psychiatry 2008; 165: 497–506.

    Article  PubMed  Google Scholar 

  280. Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T et al. Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 2001; 107: 617–629.

    Article  CAS  PubMed  Google Scholar 

  281. Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H et al. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA 2003; 100: 8987–8992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL . Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 2004; 113: 913–923.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Hornstein M, Hoffmann MJ, Alexa A, Yamanaka M, MĂ¼ller M, Jung V et al. Protein phosphatase and TRAIL receptor genes as new candidate tumor genes on chromosome 8p in prostate cancer. Cancer Genomics Proteomics 2008; 5: 123–136.

    CAS  PubMed  Google Scholar 

  284. Leroux-Nicollet I, Costentin J . Transient expression of the vesicular monoamine transporter during development in the rat thalamus and cortex. Neurosci Lett 1998; 248: 167–170.

    Article  CAS  PubMed  Google Scholar 

  285. Verney C, Lebrand C, Gaspar P . Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat Rec 2002; 267: 87–93.

    Article  PubMed  Google Scholar 

  286. Eells JB . The control of dopamine neuron development, function and survival: insights from transgenic mice and the relevance to human disease. Curr Med Chem 2003; 10: 857–870.

    Article  CAS  PubMed  Google Scholar 

  287. Bly M . Mutation in the vesicular monoamine gene, SLC18A1, associated with schizophrenia. Schizophr Res 2005; 78: 337–338.

    Article  PubMed  Google Scholar 

  288. Richards M, Iijima Y, Kondo H, Shizuno T, Hori H, Arima K et al. Associationstudy of the vesicular monoamine transporter 1 (VMAT1) gene with schizophrenia in a Japanese population. Behav Brain Funct 2006; 2: 39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  289. Chen SF, Chen CH, Chen JY, Wang YC, Lai IC, Liou YJ et al. Support for association of the A277C single nucleotide polymorphism in human vesicular monoamine transporter 1 gene with schizophrenia. Schizophr Res 2007; 90: 363–365.

    Article  PubMed  Google Scholar 

  290. Lohoff FW, Weller AE, Bloch PJ, Buono RJ, Doyle GA, Ferraro TN et al. Association between polymorphisms in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) on chromosome 8p and schizophrenia. Neuropsychobiology 2008; 57: 55–60.

    Article  PubMed  Google Scholar 

  291. Talkowski ME, Kirov G, Bamne M, Georgieva L, Torres G, Mansour H et al. A network of dopaminergic gene variations implicated as risk factors for schizophrenia. Hum Mol Genet 2008; 17: 747–758.

    Article  CAS  PubMed  Google Scholar 

  292. Lohoff FW, Dahl JP, Ferraro TN, Arnold SE, Gallinat J, Sander T et al. Variations in the vesicular monoamine transporter 1 gene (VMAT1/SLC18A1) are associated with bipolar i disorder. Neuropsychopharmacology 2006; 31: 2739–2747.

    Article  CAS  PubMed  Google Scholar 

  293. Lohoff FW, Lautenschlager M, Mohr J, Ferraro TN, Sander T, Gallinat J . Association between variation in the vesicular monoamine transporter 1 gene on chromosome 8p and anxiety-related personality traits. Neurosci Lett 2008; 434: 41–45.

    Article  CAS  PubMed  Google Scholar 

  294. Cordeiro ML, Gundersen CB, Umbach JA . Convergent effects of lithium and valproate on the expression of proteins associated with large dense core vesicles in NGF-differentiated PC12 cells. Neuropsychopharmacology 2004; 29: 39–44.

    Article  CAS  PubMed  Google Scholar 

  295. Adegbola A, Gao H, Sommer S, Browning M . A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 2008; 146: 505–511.

    Article  CAS  Google Scholar 

  296. Nilsson O, Jakobsen AM, Kölby L, Bernhardt P, Forssell-Aronsson E, Ahlman H . Importance of vesicle proteins in the diagnosis and treatment of neuroendocrine tumors. Ann N Y Acad Sci 2004; 1014: 280–283.

    Article  CAS  PubMed  Google Scholar 

  297. Zohar AH, Dina C, Rosolio N, Osher Y, Gritsenko I, Bachner-Melman R et al. Tridimensional personality questionnaire trait of harm avoidance (anxiety proneness) is linked to a locus on chromosome 8p21. Am J Med Genet B Neuropsychiatr Genet 2003; 117: 66–69.

    Article  Google Scholar 

  298. Ressler KJ, Nemeroff CB . Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 2000; 12: 2–19.

    Article  PubMed  Google Scholar 

  299. Clark DA, Arranz MJ, Mata I, Lopéz-Ilundain J, Pérez-Nievas F, Kerwin RW . Polymorphisms in the promoter region of the alpha1A-adrenoceptor gene are associated with schizophrenia/schizoaffective disorder in a Spanish isolate population. Biol Psychiatry 2005; 58: 435–439.

    Article  CAS  PubMed  Google Scholar 

  300. Hong CJ, Wang YC, Liu TY, Liu HC, Tsai SJ . A study of alpha-adrenoceptor gene polymorphisms and Alzheimer disease. J Neural Transm 2001; 108: 445–450.

    Article  CAS  PubMed  Google Scholar 

  301. Bolonna AA, Arranz MJ, Munro J, Osborne S, Petouni M, Martinez M et al. No influence of adrenergic receptor polymorphisms on schizophrenia and antipsychotic response. Neurosci Lett 2000; 280: 65–68.

    Article  CAS  PubMed  Google Scholar 

  302. Hsu JW, Wang YC, Lin CC, Bai YM, Chen JY, Chiu HJ et al. No evidence for association of alpha 1a adrenoceptor gene polymorphism and clozapine-induced urinary incontinence. Neuropsychobiology 2000; 42: 62–65.

    Article  CAS  PubMed  Google Scholar 

  303. Huang K, Shi Y, Tang W, Tang R, Guo S, Xu Y et al. No association found between the promoter variants of ADRA1A and schizophrenia in the Chinese population. J Psychiatr Res 2008; 42: 384–388.

    Article  PubMed  Google Scholar 

  304. Friedman JI, Adler DN, Davis KL . The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer's disease. Biol Psychiatry 1999; 46: 1243–1252.

    Article  CAS  PubMed  Google Scholar 

  305. Knauber J, MĂ¼ller WE . Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the alpha (1b)-adrenoceptor. Eur Neuropsychopharmacol 2000; 10: 423–427.

    Article  CAS  PubMed  Google Scholar 

  306. Roehrborn CG, Prajsner A, Kirby R, Andersen M, Quinn S, Mallen S . A double-blind placebo-controlled study evaluating the onset of action of doxazosin gastrointestinal therapeutic system in the treatment of benign prostatic hyperplasia. Eur Urol 2005; 48: 445–452.

    Article  CAS  PubMed  Google Scholar 

  307. Hui H, Fernando MA, Heaney AP . The alpha1-adrenergic receptor antagonist doxazosin inhibits EGFR and NF-kappaB signalling to induce breast cancer cell apoptosis. Eur J Cancer 2008; 44: 160–166.

    Article  CAS  PubMed  Google Scholar 

  308. Verhoeven K, De Jonghe P, Van de Putte T, Nelis E, Zwijsen A, Verpoorten N et al. Slowed conduction and thin myelination of peripheral nerves associated with mutant rho Guanine-nucleotide exchange factor 10. Am J Hum Genet 2003; 73: 926–932.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  309. Adithi M, Venkatesan N, Kandalam M, Biswas J, Krishnakumar S . Expressions of Rac1, Tiam1 and Cdc42 in retinoblastoma. Exp Eye Res 2006; 83: 1446–1452.

    Article  CAS  PubMed  Google Scholar 

  310. Egleton RD, Brown KC, Dasgupta P . Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis. Trends Pharmacol Sci 2008; 29: 151–158.

    Article  CAS  PubMed  Google Scholar 

  311. Faraone SV, Su J, Taylor L, Wilcox M, Van Eerdewegh P, Tsuang MT . A novel permutation testing method implicates sixteen nicotinic acetylcholine receptor genes as risk factors for smoking in schizophrenia families. Hum Hered 2004; 57: 59–68.

    Article  CAS  PubMed  Google Scholar 

  312. Shi J, Hattori E, Zou H, Badner JA, Christian SL, Gershon ES et al. No evidence for association between 19 cholinergic genes and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 715–723.

    Article  CAS  Google Scholar 

  313. Blaveri E, Kalsi G, Lawrence J, Quested D, Moorey H, Lamb G et al. Genetic association studies of schizophrenia using the 8p21-22 genes: prepronociceptin (PNOC), neuronal nicotinic cholinergic receptor alpha polypeptide 2 (CHRNA2) and arylamine N-acetyltransferase 1 (NAT1). Eur J Hum Genet 2001; 9: 469–472.

    Article  CAS  PubMed  Google Scholar 

  314. Lohoff FW, Ferraro TN, McNabb L, Schwebel C, Dahl JP, Doyle GA et al. No association between common variations in the neuronal nicotinic acetylcholine receptor alpha2 subunit gene (CHRNA2) and bipolar I disorder. Psychiatry Res 2005; 135: 171–177.

    Article  CAS  PubMed  Google Scholar 

  315. Cook LJ, Ho LW, Wang L, Terrenoire E, Brayne C, Evans JG et al. Candidate gene association studies of genes involved in neuronal cholinergic transmission in Alzheimer's disease suggests choline acetyltransferase as a candidate deserving further study. Am J Med Genet B Neuropsychiatr Genet 2005; 132: 5–8.

    Article  Google Scholar 

  316. Li H, Wetten S, Li L, St Jean PL, Upmanyu R, Surh L et al. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 2008; 65: 45–53.

    Article  PubMed  Google Scholar 

  317. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron 2007; 54: 713–720.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  318. DĂ­az-Otero F, Quesada M, Morales-Corraliza J, MartĂ­nez-Parra C, GĂ³mez-Garre P, Serratosa JM . Autosomal dominant nocturnal frontal lobe epilepsy with a mutation in the CHRNB2 gene. Epilepsia 2008; 49: 516–520.

    Article  CAS  PubMed  Google Scholar 

  319. Russo P, Catassi A, Cesario A, Servent D . Development of novel therapeutic strategies for lung cancer: targeting the cholinergic system. Curr Med Chem 2006; 13: 3493–3512.

    Article  CAS  PubMed  Google Scholar 

  320. Paleari L, Grozio A, Cesario A, Russo P . The cholinergic system and cancer. Semin Cancer Biol 2008; 18: 211–217.

    Article  CAS  PubMed  Google Scholar 

  321. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 633–637.

    Article  CAS  PubMed  Google Scholar 

  322. Maziade M, Roy MA, Chagnon YC, Cliche D, Fournier JP, Montgrain N et al. Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families. Mol Psychiatry 2005; 10: 486–499.

    Article  CAS  PubMed  Google Scholar 

  323. Lam DC, Girard L, Ramirez R, Chau WS, Suen WS, Sheridan S et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res 2007; 67: 4638–4647.

    Article  CAS  PubMed  Google Scholar 

  324. Song P, Sekhon HS, Fu XW, Maier M, Jia Y, Duan J et al. Activated cholinergic signaling provides a target in squamous cell lung carcinoma. Cancer Res 2008; 68: 4693–4700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  325. Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I . Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Dev Biol 2008; 320: 60–71.

    Article  CAS  PubMed  Google Scholar 

  326. Wong YF, Cheung TH, Lo KW, Yim SF, Siu NS, Chan SC et al. Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling. Oncogene 2007; 26: 1971–1982.

    Article  CAS  PubMed  Google Scholar 

  327. Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S et al. Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 2007; 28: 2459–2466.

    Article  CAS  PubMed  Google Scholar 

  328. Tochigi M, Iwamoto K, Bundo M, Sasaki T, Kato N, Kato T . Gene expression profiling of major depression and suicide in the prefrontal cortex of postmortem brains. Neurosci Res 2008; 60: 184–191.

    Article  CAS  PubMed  Google Scholar 

  329. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M . Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70: 221–227.

    Article  CAS  PubMed  Google Scholar 

  330. Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG . Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci 2008; 11: 429–439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  331. Engelender S, Sharp AH, Colomer V, Tokito MK, Lanahan A, Worley P et al. Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin. Hum Mol Genet 1997; 6: 2205–2212.

    Article  CAS  PubMed  Google Scholar 

  332. Gurling HM, Critchley H, Datta SR, McQuillin A, Blaveri E, Thirumalai S et al. Genetic association and brain morphology studies and the chromosome 8p22 pericentriolar material 1 (PCM1) gene in susceptibility to schizophrenia. Arch Gen Psychiatry 2006; 63: 844–854.

    Article  PubMed Central  PubMed  Google Scholar 

  333. Huang KP, Chase AJ, Cross NC, Reiter A, Li TY, Wang TF et al. Evolutional change of karyotype with t(8;9)(p22;p24) and HLA-DR immunophenotype in relapsed acute myeloid leukemia. Int J Hematol 2008; 88: 197–201.

    Article  PubMed  Google Scholar 

  334. Shibata N, Kawarai T, Meng Y, Lee JH, Lee HS, Wakutani Y et al. Association studies between the plasmin genes and late-onset Alzheimer's disease. Neurobiol Aging 2007; 28: 1041–1043.

    Article  CAS  PubMed  Google Scholar 

  335. ClarimĂ³n J, Bertranpetit J, Calafell F, Boada M, TĂ rraga L, Comas D . Association study between Alzheimer's disease and genes involved in Abeta biosynthesis, aggregation and degradation: suggestive results with BACE1. J Neurol 2003; 250: 956–9561.

    Article  CAS  PubMed  Google Scholar 

  336. Ducray F, Idbaih A, de Reyniès A, Bièche I, Thillet J, Mokhtari K et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer 2008; 7: 41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  337. Svensson A, Norrby M, Libelius R, TĂ¥gerud S . Secreted frizzled related protein 1 (Sfrp1) and Wnt signaling in innervated and denervated skeletal muscle. J Mol Histol 2008; 39: 329–337.

    Article  CAS  PubMed  Google Scholar 

  338. Takagi H, Sasaki S, Suzuki H, Toyota M, Maruyama R, Nojima M et al. Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma. J Gastroenterol 2008; 43: 378–389.

    Article  PubMed  Google Scholar 

  339. Dalgin GS, Drever M, Williams T, King T, Delisi C, Liou LS . Identification of Novel Epigenetic Markers for Clear Cell Renal Cell Carcinoma. J Urol 2008; 180: 1126–1130.

    Article  CAS  PubMed  Google Scholar 

  340. Sur M, Rubenstein JL . Patterning and plasticity of the cerebral cortex. Science 2005; 310: 805–810.

    Article  CAS  PubMed  Google Scholar 

  341. Rash BG, Grove EA . Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 2006; 16: 25–34.

    Article  CAS  PubMed  Google Scholar 

  342. Borello U, Cobos I, Long JE, Murre C, Rubenstein JL . FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development. Neural Develop 2008; 3: 17.

    Article  PubMed Central  CAS  Google Scholar 

  343. Bergson C, Levenson R, Goldman-Rakic PS, Lidow MS . Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling. Trends Pharmacol Sci 2003; 24: 486–492.

    Article  CAS  PubMed  Google Scholar 

  344. Strous RD, Greenbaum L, Kanyas K, Merbl Y, Horowitz A, Karni O et al. Association of the dopamine receptor interacting protein gene, NEF3, with early response to antipsychotic medication. Int J Neuropsychopharmacol 2007; 10: 321–333.

    Article  CAS  PubMed  Google Scholar 

  345. Hagihara A, Miyamoto K, Furuta J, Hiraoka N, Wakazono K, Seki S et al. Identification of 27 5′ CpG islands aberrantly methylated and 13 genes silenced in human pancreatic cancers. Oncogene 2004; 23: 8705–8710.

    Article  CAS  PubMed  Google Scholar 

  346. Happè F . An advanced test of theory of mind: understanding of story characters´ thoughts and feelings by able autistics, mentally handicapped and normal children and adults. J Autism Dev Disord 1994; 24: 129–154.

    Article  PubMed  Google Scholar 

  347. BrĂ¼ne M, BrĂ¼ne-Cohrs U . Theory of mind-evolution, ontogeny, brain mechanisms and psychopathology. Neurosci Biobehav Rev 2006; 30: 437–455.

    Article  PubMed  Google Scholar 

  348. Pinkham AE, Hopfinger JB, Pelphrey KA, Piven J, Penn DL . Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophr Res 2008; 99: 164–175.

    Article  PubMed  Google Scholar 

  349. Cheh MA, Millonig JH, Roselli LM, Ming X, Jacobsen E, Kamdar S et al. En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Res 2006; 1116: 166–176.

    Article  CAS  PubMed  Google Scholar 

  350. Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 2007; 54: 387–402.

    Article  CAS  PubMed  Google Scholar 

  351. Gemelli T, Berton O, Nelson ED, Perrotti LI, Jaenisch R, Monteggia LM . Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry 2006; 59: 468–476.

    Article  CAS  PubMed  Google Scholar 

  352. Klejbor I, Myers JM, Hausknecht K, Corso TD, Gambino AS, Morys J et al. Fibroblast growth factor receptor signaling affects development and function of dopamine neurons—inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem 2006; 97: 1243–1258.

    Article  CAS  PubMed  Google Scholar 

  353. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G, Carson RE, Quarantelli M et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002; 5: 267–271.

    Article  CAS  PubMed  Google Scholar 

  354. Swerdlow NR, Geyer MA . Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 1998; 24: 285–301.

    Article  CAS  PubMed  Google Scholar 

  355. Sanchez-Pernaute R, Lee H, Patterson M, Reske-Nielsen C, Yoshizaki T, Sonntag KC et al. Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson's disease. Brain 2008; 131: 2127–2139. [E-pub ahead of print] doi:10.1093/brain/awn144.

    Article  PubMed Central  PubMed  Google Scholar 

  356. Grothe C, Timmer M . The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system. Brain Res Rev 2007; 54: 80–91.

    Article  CAS  PubMed  Google Scholar 

  357. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA 2004; 101: 15506–15511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  358. Aston C, Jiang L, Sokolov BP . Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 2005; 10: 309–322.

    Article  CAS  PubMed  Google Scholar 

  359. Riva MA, Molteni R, Bedogni F, Racagni G, Fumagalli F . Emerging role of the FGF system in psychiatric disorders. Trends Pharmacol Sci 2005; 26: 228–231.

    Article  CAS  PubMed  Google Scholar 

  360. Cholfin JA, Rubenstein JL . Frontal cortex subdivision patterning is coordinately regulated by Fgf8, Fgf17, and Emx2. J Comp Neurol 2008; 509: 144–155.

    Article  PubMed Central  PubMed  Google Scholar 

  361. Goldman-Rakic PS . The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 1996; 351: 1445–1453.

    Article  CAS  PubMed  Google Scholar 

  362. Heidbreder CA, Groenewegen HJ . The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27: 555–579.

    Article  PubMed  Google Scholar 

  363. Rudebeck PH, Buckley MJ, Walton ME, Rushworth MF . A role for the macaque anterior cingulate gyrus in social valuation. Science 2006; 313: 1310–1312.

    Article  CAS  PubMed  Google Scholar 

  364. Heer R, Douglas D, Mathers ME, Robson CN, Leung HY . Fibroblast growth factor 17 is over-expressed in human prostate cancer. J Pathol 2004; 204: 578–586.

    Article  CAS  PubMed  Google Scholar 

  365. Abate-Shen C, Shen MM . FGF signaling in prostate tumorigenesis—new insights into epithelial-stromal interactions. Cancer Cell 2007; 12: 495–497.

    Article  CAS  PubMed  Google Scholar 

  366. Sahadevan K, Darby S, Leung HY, Mathers ME, Robson CN, Gnanapragasam VJ . Selective over-expression of fibroblast growth factor receptors 1 and 4 in clinical prostate cancer. J Pathol 2007; 213: 82–90.

    Article  CAS  PubMed  Google Scholar 

  367. Chase A, Grand FH, Cross NC . Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 2007; 110: 3729–3734.

    Article  CAS  PubMed  Google Scholar 

  368. Pennisi E . Breakthrough of the year. Human genetic variation. Science 2007; 318: 1842–1843.

    Article  CAS  PubMed  Google Scholar 

  369. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K et al. Whole-genome association study of bipolar disorder. Mol Psychiatry 2008; 13: 558–569.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  370. Estivill X, Armengol L . Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet 2007; 3: 1787–1799.

    Article  CAS  PubMed  Google Scholar 

  371. Park JK, Lee HJ, Kim JW, Park YH, Lee SS, Chang HI et al. Differences in p53 gene polymorphisms between Korean schizophrenia and lung cancer patients. Schizophr Res 2004; 67: 71–74.

    Article  CAS  PubMed  Google Scholar 

  372. Cui DH, Jiang KD, Jiang SD, Xu YF, Yao H . The tumor suppressor adenomatous polyposis coli gene is associated with susceptibility to schizophrenia. Mol Psychiatry 2005; 10: 669–677.

    Article  CAS  PubMed  Google Scholar 

  373. Numata S, Ueno S, Iga J, Yamauchi K, Hongwei S, Hashimoto R et al. TGFBR2 gene expression and genetic association with schizophrenia. J Psychiatr Res 2008; 42: 425–432.

    Article  PubMed  Google Scholar 

  374. Hainaut P, Hollstein M . p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 2000; 77: 81–137.

    Article  CAS  PubMed  Google Scholar 

  375. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  376. Kastan M . Wild-type p53: tumors can't stand it. Cell 2007; 128: 837–840.

    Article  CAS  PubMed  Google Scholar 

  377. Plummer NW, Gallione CJ, Srinivasan S, Zawistowski JS, Louis DN, Marchuk DA . Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. Am J Pathol 2004; 165: 1509–1518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  378. Yoon H, Liyanarachchi S, Wright FA, Davuluri R, Lockman JC, de la Chapelle A et al. Gene expression profiling of isogenic cells with different TP53 gene dosage reveals numerous genes that are affected by TP53 dosage and identifies CSPG2 as a direct target of p53. Proc Natl Acad Sci USA 2002; 99: 15632–15637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Chiu HJ, Wang YC, Chen JY, Hong CJ, Tsai SJ . Association study of the p53-gene Pro72Arg polymorphism in schizophrenia. Psychiatry Res 2001; 105: 279–283.

    Article  CAS  PubMed  Google Scholar 

  380. Papiol S, Arias B, Barrantes-Vidal N, Guitart M, Salgado P, CatalĂ¡n R et al. Analysis of polymorphisms at the tumor suppressor gene p53 (TP53) in contributing to the risk for schizophrenia and its associated neurocognitive deficits. Neurosci Lett 2004; 363: 78–80.

    Article  CAS  PubMed  Google Scholar 

  381. Yang Y, Xiao Z, Chen W, Sang H, Guan Y, Peng Y et al. Tumor suppressor gene TP53 is genetically associated with schizophrenia in the Chinese population. Neurosci Lett 2004; 369: 126–131.

    Article  CAS  PubMed  Google Scholar 

  382. Ni X, Trakalo J, Valente J, Azevedo MH, Pato MT, Pato CN et al. Human p53 tumor suppressor gene (TP53) and schizophrenia: case-control and family studies. Neurosci Lett 2005; 388: 173–178.

    Article  CAS  PubMed  Google Scholar 

  383. TabarĂ©s-Seisdedos R, EscĂ¡mez T, MartĂ­nez-GimĂ©nez JA, BalanzĂ¡ V, Salazar J, Selva G et al. Variations in genes regulating neuronal migration predict reduced prefrontal cognition in schizophrenia and bipolar subjects from mediterranean Spain: a preliminary study. Neuroscience 2006; 139: 1289–1300.

    Article  CAS  PubMed  Google Scholar 

  384. Cully M, You H, Levine AJ, Mak TW . Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6: 184–192.

    Article  CAS  PubMed  Google Scholar 

  385. van Diepen MT, Eickholt BJ . Function of PTEN during the formation and maintenance of neuronal circuits in the brain. Dev Neurosci 2008; 30: 59–64.

    Article  CAS  PubMed  Google Scholar 

  386. Avogaro A, de Kreutzenberg SV, Fadini GP . Oxidative stress and vascular disease in diabetes: is the dichotomization of insulin signaling still valid? Free Radic Biol Med 2008; 44: 1209–1215.

    Article  CAS  PubMed  Google Scholar 

  387. Thiselton DL, Vladimirov VI, Kuo PH, McClay J, Wormley B, Fanous A et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high-density schizophrenia families. Biol Psychiatry 2008; 63: 449–457.

    Article  CAS  PubMed  Google Scholar 

  388. Tamguney T, Stokoe D . New insights into PTEN. J Cell Sci 2007; 120: 4071–4079.

    Article  CAS  PubMed  Google Scholar 

  389. Haas-Kogan D, Stokoe D . PTEN in brain tumors. Expert Rev Neurother 2008; 8: 599–610.

    Article  CAS  PubMed  Google Scholar 

  390. Asher G, Lotem J, Kama R, Sachs L, Shaul Y . NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 2002; 99: 3099–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Fagerholm R, Hofstetter B, Tommiska J, Aaltonen K, Vrtel R, Syrjäkoski K et al. NAD(P)H:quinone oxidoreductase 1 NQO1*2 genotype (P187S) is a strong prognostic and predictive factor in breast cancer. Nat Genet 2008; 40: 844–853.

    Article  CAS  PubMed  Google Scholar 

  392. Pae CU, Yu HS, Kim JJ, Lee CU, Lee SJ, Jun TY et al. Quinone oxidoreductase (NQO1) gene polymorphism (609C/T) may be associated with tardive dyskinesia, but not with the development of schizophrenia. Int J Neuropsychopharmacol 2004; 7: 495–500.

    Article  CAS  PubMed  Google Scholar 

  393. Liou YJ, Wang YC, Lin CC, Bai YM, Lai IC, Liao DL et al. Association analysis of NAD(P)Hratioquinone oxidoreductase (NQO1) Pro187Ser genetic polymorphism and tardive dyskinesia in patients with schizophrenia in Taiwan. Int J Neuropsychopharmacol 2005; 8: 483–486.

    Article  CAS  PubMed  Google Scholar 

  394. Hori H, Shinkai T, Matsumoto C, Ohmori O, Nakamura J . No association between a functional NAD (P)H: quinone oxidoreductase gene polymorphism (Pro187Ser) and tardive dyskinesia. Neuromolecular Med 2006; 8: 375–380.

    Article  CAS  PubMed  Google Scholar 

  395. Usadel H, Brabender J, Danenberg KD, JerĂ³nimo C, Harden S, Engles J et al. Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res 2002; 62: 371–375.

    CAS  PubMed  Google Scholar 

  396. Harder J, Opitz OG, Brabender J, Olschewski M, Blum HE, Nomoto S et al. Quantitative promoter methylation analysis of hepatocellular carcinoma, cirrhotic and normal liver. Int J Cancer 2008; 122: 2800–2804.

    Article  CAS  PubMed  Google Scholar 

  397. Akiyama T . Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 2000; 11: 273–282.

    Article  CAS  PubMed  Google Scholar 

  398. Harrison PJ, Law AJ . Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 2006; 60: 132–140.

    Article  CAS  PubMed  Google Scholar 

  399. Britsch S . The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 2007; 190: 1–65.

    Article  PubMed  Google Scholar 

  400. Huang HE, Chin SF, Ginestier C, Bardou VJ, AdĂ©laĂ¯de J, Iyer NG et al. A recurrent chromosome breakpoint in breast cancer at the NRG1/neuregulin 1/heregulin gene. Cancer Res 2004; 64: 6840–6844.

    Article  CAS  PubMed  Google Scholar 

  401. Pole JC, Courtay-Cahen C, Garcia MJ, Blood KA, Cooke SL, Alsop AE et al. High-resolution analysis of chromosome rearrangements on 8p in breast, colon and pancreatic cancer reveals a complex pattern of loss, gain and translocation. Oncogene 2006; 25: 5693–5706.

    Article  CAS  PubMed  Google Scholar 

  402. Tan W, Wang Y, Gold B, Chen J, Dean M, Harrison PJ et al. Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identification of a functional promoter variant associated with schizophrenia. J Biol Chem 2007; 282: 24343–24351.

    Article  CAS  PubMed  Google Scholar 

  403. Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R et al. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proc Natl Acad Sci USA 2006; 103: 6747–6752.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  404. Kanakry CG, Li Z, Nakai Y, Sei Y, Weinberger DR . Neuregulin-1 regulates cell adhesion via an ErbB2/phosphoinositide-3 kinase/Akt-dependent pathway: potential implications for schizophrenia and cancer. PLoS ONE 2007; 2: 1369.

    Article  CAS  Google Scholar 

  405. Esteller M . Epigenetics in cancer. N Engl J Med 2008; 358: 1148–1159.

    Article  CAS  PubMed  Google Scholar 

  406. Viswanathan SR, Daley GQ, Gregory RI . Selective blockade of microRNA processing by Lin28. Science 2008; 320: 97–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  407. Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setién F et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67: 1424–1429.

    Article  CAS  PubMed  Google Scholar 

  408. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008; 111: 3183–3189.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  409. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008; 6: 14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  410. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130: 2113–2129.

    Article  CAS  PubMed  Google Scholar 

  411. Marcucci G, Radmacher MD, Maharry K, MrĂ³zek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    Article  CAS  PubMed  Google Scholar 

  412. Li H, Yamagata T, Mori M, Yasuhara A, Momoi MY . Mutation analysis of methyl-CpG binding protein family genes in autistic patients. Brain Dev 2005; 27: 321–325.

    Article  CAS  PubMed  Google Scholar 

  413. Shibayama A, Cook Jr EH, Feng J, Glanzmann C, Yan J, Craddock N et al. MECP2 structural and 3′-UTR variants in schizophrenia, autism and other psychiatric diseases: a possible association with autism. Am J Med Genet B Neuropsychiatr Genet 2004; 128: 50–53.

    Article  Google Scholar 

  414. Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM . Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 2006; 1: 1–11.

    Article  Google Scholar 

  415. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–188.

    Article  CAS  PubMed  Google Scholar 

  416. http://microrna.sanger.ac.uk/ (last accessed 26 July 2008).

  417. Sutcliffe JS . Genetics. Insights into the pathogenesis of autism. Science 2008; 321: 208–209.

    Article  CAS  PubMed  Google Scholar 

  418. Perkins DO, Jeffries C, Sullivan P . Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 2005; 10: 69–78.

    Article  CAS  PubMed  Google Scholar 

  419. Rogaev EI . Small RNAs in human brain development and disorders. Biochemistry (Mosc) 2005; 70: 1404–1407.

    Article  CAS  Google Scholar 

  420. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol 2007; 8: R27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  421. Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E et al. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE 2007; 2: 873.

    Article  CAS  Google Scholar 

  422. Beveridge NJ, Tooney PA, Carroll AP, Gardiner E, Bowden N, Scott RJ et al. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Genet 2008; 17: 1156–1168.

    Article  CAS  PubMed  Google Scholar 

  423. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40: 751–760.

    Article  CAS  PubMed  Google Scholar 

  424. Lin SL, Chang SJ, Ying SY . First in vivo evidence of microRNA-induced fragile X mental retardation syndrome. Mol Psychiatry 2006; 11: 616–617.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  425. Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S et al. MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet 2008; 17: 1192–1199.

    Article  CAS  PubMed  Google Scholar 

  426. Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics 2008; 9: 153–161.

    Article  CAS  PubMed  Google Scholar 

  427. Todd JA . Statistical false positive or true disease pathway? Nat Genet 2006; 38: 731–733.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the following: Spanish FIS-MSC Grant PI051293, the Spanish Ministry of Health, Instituto de Salud Carlos III, CIBERSAM and FundaciĂ³n Alicia Koplowitz to RTS; and from Nina Ireland and NIMH R37MH49428-16 to JLRR. We thank Teresa EscĂ¡mez, Juan Antonio MartĂ­nez-GimĂ©nez, Vicent BalanzĂ¡-MartĂ­nez, Salvador MartĂ­nez, Eduard Vieta and Manuel GĂ³mez-Beneyto for their helpful advice on previous versions of the manuscript and for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L R Rubenstein.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabarés-Seisdedos, R., Rubenstein, J. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 14, 563–589 (2009). https://doi.org/10.1038/mp.2009.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.2

Keywords

This article is cited by

Search

Quick links