Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Blood mononuclear cell gene expression signature of postpartum depression

Abstract

In sorrow thou shalt bring forth children (Genesis 3:16) seems as relevant today, with one of seven mothers afflicted by a depressive episode, constituting the most common medical complication after delivery. Why mothers are variably affected by mood symptoms postpartum remains unclear, and the pathogenesis and early molecular indicators of this divergent outcome have not been described. We applied a case–control design comparing differential global gene expression profiles in blood mononuclear cells sampled shortly after delivery at the time of inception of postpartum depression (PD). Nine antidepressant naive mothers showing high depressive scores and developing a persisting major depressive episode with postpartum onset were compared with 10 mothers showing low depressive scores and no depressive symptoms on prospective follow-up. A distinctive gene expression signature was observed after delivery among mothers with an emergent PD, with a significant overabundance of transcripts showing a high-fold differential expression between groups, and correlating with depressive symptom severity among all mothers. Early expression signatures correctly classified the majority of PD patients and controls. Those developing persisting PD exhibit a relative downregulation of transcription after delivery, with differential immune activation, and decreased transcriptional engagement in cell proliferation, and DNA replication and repair processes. Our data provide initial evidence indicating that blood cells sampled shortly after delivery may harbor valuable prognostic information for identifying the onset of persisting PD. Some of the informative transcripts and pathways may be implicated in the differential vulnerability that underlies depression pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Munk-Olsen T, Laursen TM, Pedersen CB, Mors O, Mortensen PB . New parents and mental disorders: a population-based register study. JAMA 2006; 296: 2582–2589.

    Article  CAS  Google Scholar 

  2. Wisner KL, Chambers C, Sit DK . Postpartum depression: a major public health problem. JAMA 2006; 296: 2616–2618.

    Article  CAS  Google Scholar 

  3. Bloch M, Schmidt PJ, Danaceau M, Murphy J, Nieman L, Rubinow DR . Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry 2000; 157: 924–930.

    Article  CAS  Google Scholar 

  4. Galea LA, Wide JK, Barr AM . Estradiol alleviates depressive-like symptoms in a novel animal model of post-partum depression. Behav Brain Res 2001; 122: 1–9.

    Article  CAS  Google Scholar 

  5. Stoffel EC, Craft RM . Ovarian hormone withdrawal-induced “depression” in female rats. Physiol Behav 2004; 83: 505–513.

    Article  CAS  Google Scholar 

  6. Suda S, Segi-Nishida E, Newton SS, Duman RS . A postpartum model in rat: behavioral and gene expression changes induced by ovarian steroid deprivation. Biol Psychiatry 2008; 64: 311–319.

    Article  CAS  Google Scholar 

  7. Sullivan PF, Neale MC, Kendler KS . Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552–1562.

    Article  CAS  Google Scholar 

  8. Kendler KS, Gatz M, Gardner CO, Pedersen NL . A Swedish national twin study of lifetime major depression. Am J Psychiatry 2006; 163: 109–114.

    Article  Google Scholar 

  9. McGuffin P, Cohen S, Knight J . Homing in on depression genes. Am J Psychiatry 2007; 164: 195–197.

    Article  Google Scholar 

  10. Treloar SA, Martin NG, Bucholz KK, Madden PA, Heath AC . Genetic influences on post-natal depressive symptoms: findings from an Australian twin sample. Psychol Med 1999; 29: 645–654.

    Article  CAS  Google Scholar 

  11. Forty L, Jones L, Macgregor S, Caesar S, Cooper C, Hough A et al. Familiality of postpartum depression in unipolar disorder: results of a family study. Am J Psychiatry 2006; 163: 1549–1553.

    Article  Google Scholar 

  12. Atz M, Walsh D, Cartagena P, Li J, Evans S, Choudary P et al. Methodological considerations for gene expression profiling of human brain. J Neurosci Methods 2007; 163: 295–309.

    Article  CAS  Google Scholar 

  13. Lipska BK, Deep-Soboslay A, Weickert CS, Hyde TM, Martin CE, Herman MM et al. Critical factors in gene expression in postmortem human brain: focus on studies in schizophrenia. Biol Psychiatry 2006; 60: 650–658.

    Article  CAS  Google Scholar 

  14. Popova T, Mennerich D, Weith A, Quast K . Effect of RNA quality on transcript intensity levels in microarray analysis of human post-mortem brain tissues. BMC Genomics 2008; 9: 91.

    Article  Google Scholar 

  15. Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B et al. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res 2008; 1289: 235–248.

    Article  Google Scholar 

  16. Tsuang MT, Nossova N, Yager T, Tsuang MM, Guo SC, Shyu KG et al. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005; 133B: 1–5.

    Article  Google Scholar 

  17. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD, Edenberg HJ et al. Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 2008; 14: 156–174.

    Article  Google Scholar 

  18. Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, Byerley W . Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res 2004; 67: 41–52.

    Article  Google Scholar 

  19. Bowden NA, Weidenhofer J, Scott RJ, Schall U, Todd J, Michie PT et al. Preliminary investigation of gene expression profiles in peripheral blood lymphocytes in schizophrenia. Schizophr Res 2006; 82: 175–183.

    Article  Google Scholar 

  20. Padmos RC, Hillegers MH, Knijff EM, Vonk R, Bouvy A, Staal FJ et al. A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 2008; 65: 395–407.

    Article  CAS  Google Scholar 

  21. Middleton FA, Pato CN, Gentile KL, McGann L, Brown AM, Trauzzi M et al. Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B Neuropsychiatr Genet 2005; 136B: 12–25.

    Article  Google Scholar 

  22. Gregg JP, Lit L, Baron CA, Hertz-Picciotto I, Walker W, Davis RA et al. Gene expression changes in children with autism. Genomics 2008; 91: 22–29.

    Article  CAS  Google Scholar 

  23. Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M et al. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 2007; 16: 1682–1698.

    Article  CAS  Google Scholar 

  24. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 15533–15538.

    Article  CAS  Google Scholar 

  25. Kanazawa T, Chana G, Glatt SJ, Mizuno H, Masliah E, Yoneda H et al. The utility of SELENBP1 gene expression as a biomarker for major psychotic disorders: replication in schizophrenia and extension to bipolar disorder with psychosis. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 686–689.

    Article  Google Scholar 

  26. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. Nature 2005; 437: 1032–1037.

    Article  CAS  Google Scholar 

  27. Baird AE . Blood genomics in human stroke. Stroke 2007; 38 (2 Suppl): 694–698.

    Article  CAS  Google Scholar 

  28. Craddock RM, Lockstone HE, Rider DA, Wayland MT, Harris LJ, McKenna PJ et al. Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms. PLoS ONE 2007; 2: e692.

    Article  Google Scholar 

  29. Naydenov AV, MacDonald ML, Ongur D, Konradi C . Differences in lymphocyte electron transport gene expression levels between subjects with bipolar disorder and normal controls in response to glucose deprivation stress. Arch Gen Psychiatry 2007; 64: 555–564.

    Article  Google Scholar 

  30. Brouard S, Mansfield E, Braud C, Li L, Giral M, Hsieh SC et al. Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance. Proc Natl Acad Sci USA 2007; 104: 15448–15453.

    Article  CAS  Google Scholar 

  31. Hakonarson H, Bjornsdottir US, Halapi E, Bradfield J, Zink F, Mouy M et al. Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc Natl Acad Sci USA 2005; 102: 14789–14794.

    Article  CAS  Google Scholar 

  32. Segman RH, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, Shalev AY . Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol Psychiatry 2005; 10: 500–513, 425.

    Article  CAS  Google Scholar 

  33. O'Hara MW, Swain AM . Rates and risk of postpartum depression—a meta-analysis. Int Rev Psychiatry 1996; 8: 37–54.

    Article  Google Scholar 

  34. Kaminski N, Friedman N . Practical approaches to analyzing results of microarray experiments. Am J Respir Cell Mol Biol 2002; 27: 125–132.

    Article  Google Scholar 

  35. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  Google Scholar 

  36. Raison CL, Capuron L, Miller AH . Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006; 27: 24–31.

    Article  CAS  Google Scholar 

  37. Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD et al. Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease. Proc Natl Acad Sci USA 2005; 102: 11023–11028.

    Article  CAS  Google Scholar 

  38. Zhou Z, Zhu G, Hariri AR, Enoch MA, Scott D, Sinha R et al. Genetic variation in human NPY expression affects stress response and emotion. Nature 2008; 452: 997–1001.

    Article  CAS  Google Scholar 

  39. Zhu G, Lipsky RH, Xu K, Ali S, Hyde T, Kleinman J et al. Differential expression of human COMT alleles in brain and lymphoblasts detected by RT-coupled 5′ nuclease assay. Psychopharmacology (Berl) 2004; 177: 178–184.

    Article  CAS  Google Scholar 

  40. Wong ML, Dong C, Maestre-Mesa J, Licinio J . Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 2008; 13: 800–812.

    Article  CAS  Google Scholar 

  41. Vaccarino V, Brennan ML, Miller AH, Bremner JD, Ritchie JC, Lindau F et al. Association of major depressive disorder with serum myeloperoxidase and other markers of inflammation: a twin study. Biol Psychiatry 2008; 64: 476–483.

    Article  CAS  Google Scholar 

  42. Sullivan PF, Fan C, Perou CM . Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 261–268.

    Article  Google Scholar 

  43. Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 2007; 39: 1208–1216.

    Article  Google Scholar 

  44. Pittenger C, Duman RS . Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008; 33: 88–109.

    Article  CAS  Google Scholar 

  45. Krishnan V, Nestler EJ . The molecular neurobiology of depression. Nature 2008; 455: 894–902.

    Article  CAS  Google Scholar 

  46. Pawluski JL, Galea LA . Reproductive experience alters hippocampal neurogenesis during the postpartum period in the dam. Neuroscience 2007; 149: 53–67.

    Article  CAS  Google Scholar 

  47. Leuner B, Mirescu C, Noiman L, Gould E . Maternal experience inhibits the production of immature neurons in the hippocampus during the postpartum period through elevations in adrenal steroids. Hippocampus 2007; 17: 434–442.

    Article  CAS  Google Scholar 

  48. Maes M, Lambrechts J, Bosmans E, Jacobs J, Suy E, Vandervorst C et al. Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol Med 1992; 22: 45–53.

    Article  CAS  Google Scholar 

  49. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Moser K, Ortmann WA et al. Expression levels for many genes in human peripheral blood cells are highly sensitive to ex vivo incubation. Genes Immun 2004; 5: 347–353.

    Article  CAS  Google Scholar 

  50. Burczynski ME, Twine NC, Dukart G, Marshall B, Hidalgo M, Stadler WM et al. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin Cancer Res 2005; 11: 1181–1189.

    CAS  PubMed  Google Scholar 

  51. Bai VU, Kaseb A, Tejwani S, Divine GW, Barrack ER, Menon M et al. Identification of prostate cancer mRNA markers by averaged differential expression and their detection in biopsies, blood, and urine. Proc Natl Acad Sci USA 2007; 104: 2343–2348.

    Article  CAS  Google Scholar 

  52. Sharma P, Sahni NS, Tibshirani R, Skaane P, Urdal P, Berghagen H et al. Early detection of breast cancer based on gene-expression patterns in peripheral blood cells. Breast Cancer Res 2005; 7: R634–R644.

    Article  CAS  Google Scholar 

  53. Booth DR, Arthur AT, Teutsch SM, Bye C, Rubio J, Armati PJ et al. Gene expression and genotyping studies implicate the interleukin 7 receptor in the pathogenesis of primary progressive multiple sclerosis. J Mol Med 2005; 83: 822–830.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a NARSAD-independent investigator award to RHS and the HWZOA women's health foundation award to RHS DHC AM and NF. We are indebted to Yael Levi and Ruti Petuchenko and to the midwives and physicians of the Hadassah Mt. Scopus Hospital Obstetrics Department for their help in participant recruitment, to Mira Korner and Neli Gluzman from the Center for Genomic Technologies at The Alexander Silberman Institute for Life Sciences for their help in preparation of the samples and hybridization and to Amos Grundwag for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R H Segman.

Additional information

Supplementary information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segman, R., Goltser-Dubner, T., Weiner, I. et al. Blood mononuclear cell gene expression signature of postpartum depression. Mol Psychiatry 15, 93–100 (2010). https://doi.org/10.1038/mp.2009.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.65

Keywords

This article is cited by

Search

Quick links