Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs

Abstract

Understanding individual differences in the susceptibility to metabolic side effects as a response to antipsychotic therapy is essential to optimize the treatment of schizophrenia. Here, we perform genomewide association studies (GWAS) to search for genetic variation affecting the susceptibility to metabolic side effects. The analysis sample consisted of 738 schizophrenia patients, successfully genotyped for 492K single nucleotide polymorphisms (SNPs), from the genomic subsample of the Clinical Antipsychotic Trial of Intervention Effectiveness study. Outcomes included 12 indicators of metabolic side effects, quantifying antipsychotic-induced change in weight, blood lipids, glucose and hemoglobin A1c, blood pressure and heart rate. Our criterion for genomewide significance was a pre-specified threshold that ensures, on average, only 10% of the significant findings are false discoveries. A total of 21 SNPs satisfied this criterion. The top finding indicated that a SNP in Meis homeobox 2 (MEIS2) mediated the effects of risperidone on hip circumference (q=0.004). The same SNP was also found to mediate risperidone's effect on waist circumference (q=0.055). Genomewide significant finding were also found for SNPs in PRKAR2B, GPR98, FHOD3, RNF144A, ASTN2, SOX5 and ATF7IP2, as well as in several intergenic markers. PRKAR2B and MEIS2 both have previous research indicating metabolic involvement, and PRKAR2B has previously been shown to mediate antipsychotic response. Although our findings require replication and functional validation, this study shows the potential of GWAS to discover genes and pathways that potentially mediate adverse effects of antipsychotic medication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kane JM, Marder SR . Psychopharmacologic treatment of schizophrenia. Schizophr Bull 1993; 19: 287–302.

    Article  CAS  PubMed  Google Scholar 

  2. Kane JM, McGlashan TH . Treatment of schizophrenia. Lancet 1995; 346: 820–825.

    Article  CAS  PubMed  Google Scholar 

  3. Correll CU, Schenk EM . Tardive dyskinesia and new antipsychotics. Curr Opin Psychiatry 2008; 21: 151–156.

    Article  PubMed  Google Scholar 

  4. Kane JM, Woerner M, Weinhold P, Kinon B, Lieberman J, Wegner J . Epidemiology of tardive dyskinesia. Clin Neuropharmacol 1983; 6: 109–115.

    Article  CAS  PubMed  Google Scholar 

  5. Pickar D, Litman RE, Hong WW, Su TP, Weissman EM, Hsiao JK et al. Clinical response to clozapine in patients with schizophrenia. Arch Gen Psychiatry 1994; 51: 159–160.

    Article  CAS  PubMed  Google Scholar 

  6. Pickar D, Hsiao JK . Clozapine treatment of schizophrenia. JAMA 1995; 274: 981–983.

    Article  CAS  PubMed  Google Scholar 

  7. Pickar D . Prospects for pharmacotherapy of schizophrenia. Lancet 1995; 345: 557–562.

    Article  CAS  PubMed  Google Scholar 

  8. Kinon BJ, Lieberman JA . Mechanisms of action of atypical antipsychotic drugs: a critical analysis. Psychopharmacology (Berl) 1996; 124: 2–34.

    Article  CAS  Google Scholar 

  9. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM . Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 2009; 373: 31–41.

    Article  CAS  PubMed  Google Scholar 

  10. Meyer JM, Davis VG, Goff DC, McEvoy JP, Nasrallah HA, Davis SM et al. Change in metabolic syndrome parameters with antipsychotic treatment in the CATIE Schizophrenia Trial: prospective data from phase 1. Schizophr Res 2008; 101: 273–286.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Henderson DC, Doraiswamy PM . Prolactin-related and metabolic adverse effects of atypical antipsychotic agents. J Clin Psychiatry 2008; 69 (Suppl 1): 32–44.

    CAS  PubMed  Google Scholar 

  12. Bellack AS . Scientific and consumer models of recovery in schizophrenia: concordance, contrasts, and implications. Schizophr Bull 2006; 32: 432–442.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gunes A, Melkersson KI, Scordo MG, Dahl ML . Association between HTR2C and HTR2A polymorphisms and metabolic abnormalities in patients treated with olanzapine or clozapine. J Clin Psychopharmacol 2009; 29: 65–68.

    Article  CAS  PubMed  Google Scholar 

  14. Barnes NM, Sharp T . A review of central 5-HT receptors and their function. Neuropharmacology 1999; 38: 1083–1152.

    Article  CAS  PubMed  Google Scholar 

  15. Meltzer HY . Treatment of schizophrenia and spectrum disorders: pharmacotherapy, psychosocial treatments, and neurotransmitter interactions. Biol Psychiatry 1999; 46: 1321–1327.

    Article  CAS  PubMed  Google Scholar 

  16. Matsui-Sakata A, Ohtani H, Sawada Y . Receptor occupancy-based analysis of the contributions of various receptors to antipsychotics-induced weight gain and diabetes mellitus. Drug Metab Pharmacokinet 2005; 20: 368–378.

    Article  CAS  PubMed  Google Scholar 

  17. Malhotra AK, Murphy Jr GM, Kennedy JL . Pharmacogenetics of psychotropic drug response. Am J Psychiatry 2004; 161: 780–796.

    Article  PubMed  Google Scholar 

  18. Altshuler D, Daly MJ, Lander ES . Genetic mapping in human disease. Science 2008; 322: 881–888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Byun E, Caillier SJ, Montalban X, Villoslada P, Fernández O, Brassat D et al. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 2008; 65: 337–344.

    Article  PubMed  Google Scholar 

  20. Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K et al. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry 2009; 14: 804–819.

    Article  CAS  PubMed  Google Scholar 

  21. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 2008; 359: 789–799.

    Article  CAS  PubMed  Google Scholar 

  22. Liu C, Batliwalla F, Li W, Lee A, Roubenoff R, Beckman E et al. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol Med 2008; 14: 575–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stroup TS, McEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM et al. The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: schizophrenia trial design and protocol development. Schizophr Bull 2003; 29: 15–31.

    Article  PubMed  Google Scholar 

  24. Lieberman JA, Stroup TS, Mcevoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  25. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. First M, Spitzer R, Gibbon M, Williams J . Structured Clinical Interview for DSM-IV Axis I Disorders—Administration Booklet. American Psychiatric Press: Washington DC, 1994.

    Google Scholar 

  27. Mcevoy JP, Meyer JM, Goff DC, Nasrallah HA, Davis SM, Sullivan L et al. Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from III NHANES. Schizophr Res 2005; 80: 19–32.

    Article  PubMed  Google Scholar 

  28. Van den Oord EJCG, Adkins DE, McClay J, Lieberman J, Sullivan PF . A systematic method for estimating individual responses to treatment with antipsychotics in CATIE. Schizophr Res 2009; 107: 13–21.

    Article  PubMed  Google Scholar 

  29. Goldstein H . Multilevel Statistical Models. Arnold: London, 1995.

    Google Scholar 

  30. Searle SR, Casella G, McCulloch CE . Variance Components. Wiley: New York, 1992.

    Book  Google Scholar 

  31. Pinheiro JC, Bates DM . Mixed-Effects Models in S and S-plus. Springer: NY, New York, 2000.

    Book  Google Scholar 

  32. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van den Oord EJCG, Sullivan PF . False discoveries and models for gene discovery. Trends Genet 2003; 19: 537–542.

    Article  CAS  PubMed  Google Scholar 

  34. Benjamini Y, Hochberg Y . Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 1995; 57: 289–300.

    Google Scholar 

  35. Storey J . The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 2003; 31: 2013–2035.

    Article  Google Scholar 

  36. Brown BW, Russell K . Methods of correcting for multiple testing: operating characteristics. Stat Med 1997; 16: 2511–2528.

    Article  CAS  PubMed  Google Scholar 

  37. Fernando RL, Nettleton D, Southey BR, Dekkers JC, Rothschild MF, Soller M . Controlling the proportion of false positives in multiple dependent tests. Genetics 2004; 166: 611–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van den Oord EJCG, Sullivan PF . A framework for controlling false discovery rates and minimizing the amount of genotyping in the search for disease mutations. Hum Hered 2003; 56: 188–199.

    Article  CAS  PubMed  Google Scholar 

  39. Korn EL, Troendle J, McShane L, Simon R . Controlling the number of false discoveries: Application to high-dimensional genomic data. J Stat Plan Inference 2004; 124: 379–398.

    Article  Google Scholar 

  40. Tsai CA, Hsueh HM, Chen JJ . Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics 2003; 59: 1071–1081.

    Article  PubMed  Google Scholar 

  41. Van den Oord EJCG . Controlling false discoveries in candidate gene studies. Mol Psychiatry 2005; 10: 230–231.

    Article  CAS  PubMed  Google Scholar 

  42. Sabatti C, Service S, Freimer N . False discovery rate in linkage and association genome screens for complex disorders. Genetics 2003; 164: 829–833.

    PubMed  PubMed Central  Google Scholar 

  43. Storey J, Tibshirani R . Statistical significance for genome-wide studies. Proc Natl Acad Sci 2003; 100: 9440–9445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bukszar J, McClay JL, van den Oord EJ . Estimating the posterior probability that genomewide association findings are true or false. Bioinformatics 2009; 25: 1807–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glonek G, Soloman P . Discussion of resampling-based multiple testing for microarray data analysis by Ge, Dudoit and Speed. Test 2003; 12: 1–77.

    Article  Google Scholar 

  46. Moens CB, Selleri L . Hox cofactors in vertebrate development. Dev Biol 2006; 291: 193–206.

    Article  CAS  PubMed  Google Scholar 

  47. Yang Y, Hwang CK, D’Souza UM, Lee SH, Junn E, Mouradian MM . Three-amino acid extension loop homeodomain proteins Meis2 and TGIF differentially regulate transcription. J Biol Chem 2000; 275: 20734–20741.

    Article  CAS  PubMed  Google Scholar 

  48. Smith JE, Afonja O, Yee HT, Inghirami G, Takeshita K . Chromosomal mapping to 15q14 and expression analysis of the human MEIS2 homeobox gene. Mamm Genome 1997; 8: 951–952.

    Article  CAS  PubMed  Google Scholar 

  49. Hui H, Perfetti R . Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. Eur J Endocrinol 2002; 146: 129–141.

    Article  CAS  PubMed  Google Scholar 

  50. Swift GH, Liu Y, Rose SD, Bischof LJ, Steelman S, Buchberg AM et al. An endocrine-exocrine switch in the activity of the pancreatic homeodomain protein PDX1 through formation of a trimeric complex with PBX1b and MRG1 (MEIS2). Mol Cell Biol 1998; 18: 5109–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, MacDonald RJ, Swift GH . DNA binding and transcriptional activation by a PDX1.PBX1b.MEIS2b trimer and cooperation with a pancreas-specific basic helix-loop-helix complex. J Biol Chem 2001; 276: 17985–17993.

    Article  CAS  PubMed  Google Scholar 

  52. Nikkila H, McMillan DR, Nunez BS, Pascoe L, Curnow KM, White PC . Sequence similarities between a novel putative G protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain. Mol Endocrinol 2000; 14: 1351–1364.

    Article  CAS  PubMed  Google Scholar 

  53. McMillan DR, Kayes-Wandover KM, Richardson JA, White PC . Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 2002; 277: 785–792.

    Article  CAS  PubMed  Google Scholar 

  54. Scheel H, Tomiuk S, Hofmann K . A common protein interaction domain links two recently identified epilepsy genes. Hum Mol Genet 2002; 11: 1757–1762.

    Article  CAS  PubMed  Google Scholar 

  55. Weston MD, Luijendijk MW, Humphrey KD, Moller C, Kimberling WJ . Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet 2004; 74: 357–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Levy FO, Oyen O, Sandberg M, Taskén K, Eskild W, Hansson V et al. Molecular cloning, complementary deoxyribonucleic acid structure and predicted full-length amino acid sequence of the hormone-inducible regulatory subunit of 3′-5′-cyclic adenosine monophosphate-dependent protein kinase from human testis. Mol Endocrinol 1988; 2: 1364–1373.

    Article  CAS  PubMed  Google Scholar 

  57. Cummings DE, Brandon EP, Planas JV, Motamed K, Idzerda RL, McKnight GS . Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature 1996; 382: 622–626.

    Article  CAS  PubMed  Google Scholar 

  58. Czyzyk TA, Sikorski MA, Yang L, McKnight GS . Disruption of the RIIbeta subunit of PKA reverses the obesity syndrome of Agouti lethal yellow mice. Proc Natl Acad Sci USA 2008; 105: 276–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Porcellini A, Messina S, De Gregorio G, Feliciello A, Carlucci A, Barone M et al. The expression of the thyroid-stimulating hormone (TSH) receptor and the cAMP-dependent protein kinase RII beta regulatory subunit confers TSH-cAMP-dependent growth to mouse fibroblasts. J Biol Chem 2003; 278: 40621–40630.

    Article  CAS  PubMed  Google Scholar 

  60. Konneker T, Barnes T, Furberg H, Losh M, Bulik CM, Sullivan PF . A searchable database of genetic evidence for psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 671–675.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol 2008; 6: e107.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Adams MR, Brandon EP, Chartoff EH, Idzerda RL, Dorsa DM, McKnight GS . Loss of haloperidol induced gene expression and catalepsy in protein kinase A-deficient mice. Proc Natl Acad Sci USA 1997; 94: 12157–12161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kanaya H, Takeya R, Takeuchi K, Watanabe N, Jing N, Sumimoto H . Fhos2, a novel formin-related actin-organizing protein, probably associates with the nestin intermediate filament. Genes Cells 2005; 10: 665–678.

    Article  CAS  PubMed  Google Scholar 

  64. Arranz MJ, de Leon J . Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12: 707–747.

    Article  CAS  PubMed  Google Scholar 

  65. Need AC, Keefe RS, Ge D, Grossman I, Dickson S, McEvoy JP et al. Pharmacogenetics of antipsychotic response in the CATIE trial: a candidate gene analysis. Eur J Hum Genet 2009; 17: 946–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Le Hellard S, Theisen FM, Haberhausen M, Raeder MB, Fernø J, Gebhardt S et al. Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol Psychiatry 2009; 14: 308–317.

    Article  CAS  PubMed  Google Scholar 

  67. Choquet H, Cavalcanti-Proenca C, Lecoeur C, Dina C, Cauchi S, Vaxillaire M et al. The T-381C SNP in BNP gene may be modestly associated with type 2 diabetes: an updated meta-analysis in 49 279 subjects. Hum Mol Genet 2009; 18: 2495–2501.

    Article  CAS  PubMed  Google Scholar 

  68. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L et al. Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution. PLoS Genet 2009; 5: e1000508.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet 2009; 41: 77–81.

    Article  CAS  PubMed  Google Scholar 

  70. Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH et al. LDL-cholesterol concentrations: a genome-wide association study. Lancet 2008; 371: 483–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 2008; 82: 139–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008; 40: 161–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009; 41: 25–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The CATIE project was supported by NIMH contract N01 MH90001. Dr Sullivan was supported by R01s MH074027 and MH077139 and Dr van den Oord was supported by R01s MH078069 and HG004240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D E Adkins.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adkins, D., Åberg, K., McClay, J. et al. Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol Psychiatry 16, 321–332 (2011). https://doi.org/10.1038/mp.2010.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.14

Keywords

This article is cited by

Search

Quick links