Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia

Abstract

Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n=142; 122 males and 20 females) or SCZ (n=143; 95 males and 48 females). We identified >200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Cardno AG, Gottesman II . Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 2000; 97: 12–17.

    Article  CAS  PubMed  Google Scholar 

  2. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995; 25: 63–77.

    Article  CAS  PubMed  Google Scholar 

  3. Sullivan PF . The genetics of schizophrenia. PLoS Med 2005; 2: e212.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68; image 45.

    Article  CAS  PubMed  Google Scholar 

  5. Yang MS, Gill M . A review of gene linkage, association and expression studies in autism and an assessment of convergent evidence. Int J Dev Neurosci 2007; 25: 69–85.

    Article  CAS  PubMed  Google Scholar 

  6. Ma D, Salyakina D, Jaworski JM, Konidari I, Whitehead PL, Andersen AN et al. A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann Hum Genet 2009; 73 (Part 3): 263–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  8. Gauthier J, Spiegelman D, Piton A, Lafreniere RG, Laurent S, St-Onge J et al. Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 421–424.

    Article  CAS  PubMed  Google Scholar 

  9. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007; 39: 25–27.

    Article  CAS  PubMed  Google Scholar 

  11. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007; 81: 1289–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 2004; 74: 552–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zoghbi HY . Postnatal neurodevelopmental disorders: meeting at the synapse? Science 2003; 302: 826–830.

    Article  CAS  PubMed  Google Scholar 

  14. Garber K . Neuroscience. Autism's cause may reside in abnormalities at the synapse. Science 2007; 317: 190–191.

    Article  CAS  PubMed  Google Scholar 

  15. Harrison PJ . The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 2004; 174: 151–162.

    Article  CAS  Google Scholar 

  16. Hashimoto R, Tankou S, Takeda M, Sawa A . Postsynaptic density: a key convergent site for schizophrenia susceptibility factors and possible target for drug development. Drugs Today (Barc) 2007; 43: 645–654.

    Article  CAS  Google Scholar 

  17. Eastwood SL . The synaptic pathology of schizophrenia: is aberrant neurodevelopment and plasticity to blame? Int Rev Neurobiol 2004; 59: 47–72.

    Article  CAS  PubMed  Google Scholar 

  18. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hill JJ, Hashimoto T, Lewis DA . Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2006; 11: 557–566.

    Article  CAS  PubMed  Google Scholar 

  20. Marco EJ, Skuse DH . Autism-lessons from the X chromosome. Soc Cogn Affect Neurosci 2006; 1: 183–193.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Loat CS, Haworth CM, Plomin R, Craig IW . A model incorporating potential skewed X-inactivation in MZ girls suggests that X-linked QTLs exist for several social behaviours including autism spectrum disorder. Ann Hum Genet 2008; 72 (Part 6): 742–751.

    Article  CAS  PubMed  Google Scholar 

  22. Laumonnier F, Cuthbert PC, Grant SG . The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 2007; 80: 205–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skuse DH . X-linked genes and mental functioning. Hum Mol Genet 2005; 4 Spec No. 1: R27–R32.

    Article  Google Scholar 

  24. Skuse D . Genetic influences on the neural basis of social cognition. Philos Trans R Soc Lond B Biol Sci 2006; 361: 2129–2141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65: 905–914.

    Article  CAS  PubMed  Google Scholar 

  26. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–188.

    Article  CAS  PubMed  Google Scholar 

  27. Yonan AL, Alarcon M, Cheng R, Magnusson PK, Spence SJ, Palmer AA et al. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet 2003; 73: 886–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petit E, Herault J, Raynaud M, Cherpi C, Perrot A, Barthelemy C et al. X chromosome and infantile autism. Biol Psychiatry 1996; 40: 457–464.

    Article  CAS  PubMed  Google Scholar 

  29. Vincent JB, Melmer G, Bolton PF, Hodgkinson S, Holmes D, Curtis D et al. Genetic linkage analysis of the X chromosome in autism, with emphasis on the fragile X region. Psychiatr Genet 2005; 15: 83–90.

    Article  PubMed  Google Scholar 

  30. Liu J, Nyholt DR, Magnussen P, Parano E, Pavone P, Geschwind D et al. A genomewide screen for autism susceptibility loci. Am J Hum Genet 2001; 69: 327–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Auranen M, Vanhala R, Varilo T, Ayers K, Kempas E, Ylisaukko-Oja T et al. A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25-27. Am J Hum Genet 2002; 71: 777–790.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gauthier J, Joober R, Dube MP, St-Onge J, Bonnel A, Gariepy D et al. Autism spectrum disorders associated with X chromosome markers in French-Canadian males. Mol Psychiatry 2006; 11: 206–213.

    Article  CAS  PubMed  Google Scholar 

  33. Dann J, DeLisi LE, Devoto M, Laval S, Nancarrow DJ, Shields G et al. A linkage study of schizophrenia to markers within Xp11 near the MAOB gene. Psychiatry Res 1997; 70: 131–143.

    Article  CAS  PubMed  Google Scholar 

  34. DeLisi LE, Wellman N, Stewart J, Smith AB, Churchman M, Crow TJ . Linkage disequilibrium study of markers within the pericentromeric region of the X chromosome. Am J Med Genet 1999; 88: 588–589.

    Article  CAS  PubMed  Google Scholar 

  35. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajarvi R et al. A genomewide screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 1999; 65: 1114–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wei J, Hemmings GP . A further study of a possible locus for schizophrenia on the X chromosome. Biochem Biophys Res Commun 2006; 344: 1241–1245.

    Article  CAS  PubMed  Google Scholar 

  37. Roser P, Kawohl W . Turner syndrome and schizophrenia: a further hint for the role of the X-chromosome in the pathogenesis of schizophrenic disorders. World J Biol Psychiatry 2008; Sept 11: 1–4.

  38. DeLisi LE, Friedrich U, Wahlstrom J, Boccio-Smith A, Forsman A, Eklund K et al. Schizophrenia and sex chromosome anomalies. Schizophr Bull 1994; 20: 495–505.

    Article  CAS  PubMed  Google Scholar 

  39. El Abd S, Patton MA, Turk J, Hoey H, Howlin P . Social, communicational, and behavioral deficits associated with ring X turner syndrome. Am J Med Genet 1999; 88: 510–516.

    Article  CAS  PubMed  Google Scholar 

  40. Fombonne E . Epidemiological trends in rates of autism. Mol Psychiatry 2002; 7 Suppl 2: S4–S6.

    Article  PubMed  Google Scholar 

  41. Goldstein JM, Seidman LJ, Goodman JM, Koren D, Lee H, Weintraub S et al. Are there sex differences in neuropsychological functions among patients with schizophrenia? Am J Psychiatry 1998; 155: 1358–1364.

    Article  CAS  PubMed  Google Scholar 

  42. Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL . Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 2006; 5: 914–922.

    Article  CAS  PubMed  Google Scholar 

  43. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D et al. Molecular anatomy of a trafficking organelle. Cell 2006; 127: 831–846.

    Article  CAS  PubMed  Google Scholar 

  44. Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 2006; April: 97 Suppl 1: 16–23.

  45. Zhang W, Zhang Y, Zheng H, Zhang C, Xiong W, Olyarchuk JG et al. SynDB: a Synapse protein DataBase based on synapse ontology. Nucleic Acids Res 2007; 35 (Database issue): D737–D741.

    Article  CAS  PubMed  Google Scholar 

  46. Gauthier J, Bonnel A, St-Onge J, Karemera L, Laurent S, Mottron L et al. NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population. Am J Med Genet B Neuropsychiatr Genet 2005; 132B: 74–75.

    Article  PubMed  Google Scholar 

  47. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 2003; 31: 334–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramensky V, Bork P, Sunyaev S . Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30: 3894–3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ng PC, Henikoff S . SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31: 3812–3814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet 2009; 41: 535–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Piton A, Michaud JL, Peng H, Aradhya S, Gauthier J, Mottron L et al. Mutations in the calcium-related gene IL1RAPL1 are associated with autism. Hum Mol Genet 2008; 17: 3965–3974.

    Article  CAS  PubMed  Google Scholar 

  52. Binda C, Newton-Vinson P, Hubalek F, Edmondson DE, Mattevi A . Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 2002; 9: 22–26.

    Article  CAS  PubMed  Google Scholar 

  53. Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K et al. Genetic variation in an individual human exome. PLoS Genet 2008; 4: e1000160.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cartegni L, Chew SL, Krainer AR . Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 2002; 3: 285–298.

    Article  CAS  PubMed  Google Scholar 

  55. Collin RW, de Heer AM, Oostrik J, Pauw RJ, Plantinga RF, Huygen PL et al. Mid-frequency DFNA8/12 hearing loss caused by a synonymous TECTA mutation that affects an exonic splice enhancer. Eur J Hum Genet 2008; 16: 1430–1436.

    Article  CAS  PubMed  Google Scholar 

  56. Aruga J, Mikoshiba K . Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol Cell Neurosci 2003; 24: 117–129.

    Article  CAS  PubMed  Google Scholar 

  57. Hemara-Wahanui A, Berjukow S, Hope CI, Dearden PK, Wu SB, Wilson-Wheeler J et al. A CACNA1F mutation identified in an X-linked retinal disorder shifts the voltage dependence of Cav1.4 channel activation. Proc Natl Acad Sci USA 2005; 102: 7553–7558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004; 119: 19–31.

    Article  CAS  PubMed  Google Scholar 

  59. Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT . CACNA1H mutations in autism spectrum disorders. J Biol Chem 2006; 281: 22085–22091.

    Article  CAS  PubMed  Google Scholar 

  60. Strom SP, Stone JL, Ten Bosch JR, Merriman B, Cantor RM, Geschwind DH et al. High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Mol Psychiatry 19 May 2009; e-pub ahead of print.

  61. Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, Archer H et al. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 2004; 75: 1079–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Munton RP, Vizi S, Mansuy IM . The role of protein phosphatase-1 in the modulation of synaptic and structural plasticity. FEBS Lett 2004; 567: 121–128.

    Article  CAS  PubMed  Google Scholar 

  63. Bingol B, Schuman EM . Synaptic protein degradation by the ubiquitin proteasome system. Curr Opin Neurobiol 2005; 15: 536–541.

    Article  CAS  PubMed  Google Scholar 

  64. Kishino T, Lalande M, Wagstaff J . UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 1997; 15: 70–73.

    Article  CAS  PubMed  Google Scholar 

  65. Nurmi EL, Bradford Y, Chen Y, Hall J, Arnone B, Gardiner MB et al. Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics 2001; 77: 105–113.

    Article  CAS  PubMed  Google Scholar 

  66. Hirsch E, Pozzato M, Vercelli A, Barberis L, Azzolino O, Russo C et al. Defective dendrite elongation but normal fertility in mice lacking the Rho-like GTPase activator Dbl. Mol Cell Biol 2002; 22: 3140–3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrie A, Billuart P et al. A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet 2000; 24: 167–170.

    Article  CAS  PubMed  Google Scholar 

  68. Maranduba CM, Sa Moreira E, Muller Orabona G, Pavanello RC, Vianna-Morgante AM, Passos-Bueno MR . Does the P172H mutation at the TM4SF2 gene cause X-linked mental retardation? Am J Med Genet A 2004; 124A: 413–415.

    Article  PubMed  Google Scholar 

  69. Campos Jr M, Abdalla CB, Santos-Reboucas CB, dos Santos AV, Pestana CP, Domingues ML et al. Low significance of MECP2 mutations as a cause of mental retardation in Brazilian males. Brain Dev 2007; 29: 293–297.

    Article  PubMed  Google Scholar 

  70. Govek EE, Newey SE, Akerman CJ, Cross JR, Van der Veken L, Van Aelst L . The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis. Nat Neurosci 2004; 7: 364–372.

    Article  CAS  PubMed  Google Scholar 

  71. Zanni G, Saillour Y, Nagara M, Billuart P, Castelnau L, Moraine C et al. Oligophrenin 1 mutations frequently cause X-linked mental retardation with cerebellar hypoplasia. Neurology 2005; 65: 1364–1369.

    Article  CAS  PubMed  Google Scholar 

  72. Mittleman G, Goldowitz D, Heck DH, Blaha CD . Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia. Synapse 2008; 62: 544–550.

    Article  CAS  PubMed  Google Scholar 

  73. Kaufmann WE, Cooper KL, Mostofsky SH, Capone GT, Kates WR, Newschaffer CJ et al. Specificity of cerebellar vermian abnormalities in autism: a quantitative magnetic resonance imaging study. J Child Neurol 2003; 18: 463–470.

    Article  PubMed  Google Scholar 

  74. Klauck SM, Felder B, Kolb-Kokocinski A, Schuster C, Chiocchetti A, Schupp I et al. Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 2006; 11: 1073–1084.

    Article  CAS  PubMed  Google Scholar 

  75. Shih JC, Chen K, Ridd MJ . Role of MAO A and B in neurotransmitter metabolism and behavior. Pol J Pharmacol 1999; 51: 25–29.

    CAS  PubMed  Google Scholar 

  76. O’Reilly RL, Davis BA . Phenylethylamine and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18: 63–75.

    Article  PubMed  Google Scholar 

  77. Wyatt RJ, Potkin SG, Bridge TP, Phelps BH, Wise CD . Monoamine oxidase in schizophrenia: an overview. Schizophr Bull 1980; 6: 199–207.

    Article  CAS  PubMed  Google Scholar 

  78. Gasso P, Bernardo M, Mas S, Crescenti A, Garcia C, Parellada E et al. Association of A/G polymorphism in intron 13 of the monoamine oxidase B gene with schizophrenia in a Spanish population. Neuropsychobiology 2008; 58: 65–70.

    Article  CAS  PubMed  Google Scholar 

  79. Lenders JW, Eisenhofer G, Abeling NG, Berger W, Murphy DL, Konings CH et al. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 1996; 97: 1010–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Grimsby J, Toth M, Chen K, Kumazawa T, Klaidman L, Adams JD et al. Increased stress response and beta-phenylethylamine in MAOB-deficient mice. Nat Genet 1997; 17: 206–210.

    Article  CAS  PubMed  Google Scholar 

  81. Gambino F, Pavlowsky A, Begle A, Dupont JL, Bahi N, Courjaret R et al. IL1-receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2+-channel and neurite elongation. Proc Natl Acad Sci USA 2007; 104: 9063–9068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Burbach JP, van der Zwaag B . Contact in the genetics of autism and schizophrenia. Trends Neurosci 2009; 32: 69–72.

    Article  CAS  PubMed  Google Scholar 

  83. Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M et al. Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet 2008; 17: 458–465.

    Article  CAS  PubMed  Google Scholar 

  84. Kilpinen H, Ylisaukko-Oja T, Hennah W, Palo OM, Varilo T, Vanhala R et al. Association of DISC1 with autism and Asperger syndrome. Mol Psychiatry 2008; 13: 187–196.

    Article  CAS  PubMed  Google Scholar 

  85. Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 2009; 66: 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sebat J, Levy DL, McCarthy SE . Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet 2009; 25: 528–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the families involved in our study and the recruitment coordinators (Anne Desjarlais, Caroline Poulin, and Sabrina Diab). We thank Annie Levert, Judith St-Onge, and Isabelle Bachand for performing DNA extraction and paternity and identity testing. We are thankful for the efforts of the members of the McGill University and Genome Quebec Innovation Centre Sequencing (Pierre Lepage, Sébastien Brunet, and Hao Fan Yam) and Bioinformatic (Louis Létourneau and Louis Dumond Joseph) groups. This work was supported by a grant from Genome Canada and Génome Québec and was cofunded by Université de Montréal, for the ‘Synapse-to-disease’ (S2D) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G A Rouleau.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piton, A., Gauthier, J., Hamdan, F. et al. Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia. Mol Psychiatry 16, 867–880 (2011). https://doi.org/10.1038/mp.2010.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.54

Keywords

This article is cited by

Search

Quick links