Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular signatures in post-mortem brain tissue of younger individuals at high risk for Alzheimer's disease as based on APOE genotype

Abstract

Alzheimer's disease (AD) is a neurodegenerative condition characterized histopathologically by neuritic plaques and neurofibrillary tangles. The objective of this transcriptional profiling study was to identify both neurosusceptibility and intrinsic neuroprotective factors at the molecular level, not confounded by the downstream consequences of pathology. We thus studied post-mortem cortical tissue in 28 cases that were non-APOE4 carriers (called the APOE3 group) and 13 cases that were APOE4 carriers. As APOE genotype is the major genetic risk factor for late-onset AD, the former group was at low risk for development of the disease and the latter group was at high risk for the disease. Mean age at death was 42 years and none of the brains had histopathology diagnostic of AD at the time of death. We first derived interregional difference scores in expression between cortical tissue from a region relatively invulnerable to AD (primary somatosensory cortex, BA 1/2/3) and an area known to be susceptible to AD pathology (middle temporal gyrus, BA 21). We then contrasted the magnitude of these interregional differences in between-group comparisons of the APOE3 (low risk) and APOE4 (high risk) genotype groups. We identified 70 transcripts that differed significantly between the groups. These included EGFR, CNTFR, CASP6, GRIA2, CTNNB1, FKBPL, LGALS1 and PSMC5. Using real-time quantitative PCR, we validated these findings. In addition, we found regional differences in the expression of APOE itself. We also identified multiple Kyoto pathways that were disrupted in the APOE4 group, including those involved in mitochondrial function, calcium regulation and cell-cycle reentry. To determine the functional significance of our transcriptional findings, we used bioinformatics pathway analyses to demonstrate that the molecules listed above comprised a network of connections with each other, APOE, and APP and MAPT. Overall, our results indicated that the abnormalities that we observed in single transcripts and in signaling pathways were not the consequences of diagnostic plaque and tangle pathology, but preceded it and thus may be a causative link in the long molecular prodrome that results in clinical AD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Braak H, Del Tredici K, Schultz C, Braak E . Vulnerability of select neuronal types to Alzheimer's disease. Ann NY Acad Sci 2000; 924: 53–61.

    Article  CAS  Google Scholar 

  2. Haroutunian V, Katsel P, Schmeidler J . Transcriptional vulnerability of brain regions in Alzheimer's disease and dementia. Neurobiol Aging 2007; 30: 561–573.

    Article  Google Scholar 

  3. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW . The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer's disease. Cerebral Cortex 1991; 1: 103–116.

    Article  CAS  Google Scholar 

  4. Brun A, Gustafson L . Distribution of cerebral degeneration in Alzheimer's disease. A clinico-pathological study. Archiv fur Psychiatrie und Nervenkrankheiten 1976; 223: 15–33.

    Article  CAS  Google Scholar 

  5. Coon KD, Myers AJ, Craig DW, Webster JA, Pearson JV, Lince DH et al. A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer's disease.[see comment]. J Clin Psychiatry 2007; 68: 613–618.

    Article  CAS  Google Scholar 

  6. Reddy PH, McWeeney S . Mapping cellular transcriptosomes in autopsied Alzheimer's disease subjects and relevant animal models.[see comment]. Neurobiol Aging 2006; 27: 1060–1077.

    Article  CAS  Google Scholar 

  7. Katsel PL, Davis KL, Haroutunian V . Large-scale microarray studies of gene expression in multiple regions of the brain in schizophrenia and Alzheimer's disease. Int Rev Neurobiol 2005; 63: 41–82.

    Article  CAS  Google Scholar 

  8. Harrison PJ, Heath PR, Eastwood SL, Burnet PW, McDonald B, Pearson RC . The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 1995; 200: 151–154.

    Article  CAS  Google Scholar 

  9. Mirnics K, Levitt P, Lewis DA . DNA microarray analysis of postmortem brain tissue. Int Rev Neurobiol 2004; 60: 153–181.

    Article  CAS  Google Scholar 

  10. Conejero-Goldberg C, Wang E, Yi C, Goldberg TE, Jones-Brando L, Marincola FM et al. Infectious pathogen detection arrays: viral detection in cell lines and postmortem brain tissue. Biotechniques 2005; 39: 741–751.

    Article  CAS  Google Scholar 

  11. Khachaturian ZS . Diagnosis of Alzheimer's disease. Arch Neurol 1985; 42: 1097–1105.

    Article  CAS  Google Scholar 

  12. Hixson JE, Vernier DT . Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 1990; 31: 545–548.

    CAS  Google Scholar 

  13. Barnes M, Freudenberg J, Thompson S, Aronow B, Pavlidis P . Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res 2005; 33: 5914–5923.

    Article  CAS  Google Scholar 

  14. McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC, Simon R . Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 2002; 18: 1462–1469.

    Article  CAS  Google Scholar 

  15. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ et al. A network-based analysis of systemic inflammation in humans. [published erratum appears in Nature 2005;438: 696] Nature 2005; 437: 1032–1037.

    Article  CAS  Google Scholar 

  16. LeBlanc AC . The role of apoptotic pathways in Alzheimer's disease neurodegeneration and cell death. Curr Alzheimer Res 2005; 2: 389–402.

    Article  CAS  Google Scholar 

  17. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M . APP binds DR6 to trigger axon pruning and neuron death via distinct caspases.[see comment]. Nature 2009; 457: 981–989.

    Article  CAS  Google Scholar 

  18. Klaiman G, Petzke TL, Hammond J, Leblanc AC . Targets of caspase-6 activity in human neurons and Alzheimer's disease. Mol Cell Proteomics 2008; 7: 1541–1555.

    Article  CAS  Google Scholar 

  19. Yasuda RP, Ikonomovic MD, Sheffield R, Rubin RT, Wolfe BB, Armstrong DM . Reduction of AMPA-selective glutamate receptor subunits in the entorhinal cortex of patients with Alzheimer's disease pathology: a biochemical study. Brain Res 1995; 678: 161–167.

    Article  CAS  Google Scholar 

  20. Carter TL, Rissman RA, Mishizen-Eberz AJ, Wolfe BB, Hamilton RL, Gandy S et al. Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer's disease patients according to Braak stage. Exp Neurol 2004; 187: 299–309.

    Article  CAS  Google Scholar 

  21. Altar CA, Vawter MP, Ginsberg SD . Target identification for CNS diseases by transcriptional profiling. Neuropsychopharmacol Rev 2009; 34: 18–54.

    Article  CAS  Google Scholar 

  22. Zhang YW, Wang R, Liu Q, Zhang H, Liao FF, Xu H . Presenilin/gamma-secretase-dependent processing of beta-amyloid precursor protein regulates EGF receptor expression. Proc Natl Acad Sci USA 2007; 104: 10613–10618.

    Article  CAS  Google Scholar 

  23. Repetto E, Yoon IS, Zheng H, Kang DE . Presenilin 1 regulates epidermal growth factor receptor turnover and signaling in the endosomal-lysosomal pathway. J Biol Chem 2007; 282: 31504–31516.

    Article  CAS  Google Scholar 

  24. Cha YK, Kim YH, Ahn YH, Koh JY . Epidermal growth factor induces oxidative neuronal injury in cortical culture. J Neurochem 2000; 75: 298–303.

    Article  CAS  Google Scholar 

  25. Kang CB, Hong Y, Dhe-Paganon S, Yoon HS . FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 2008; 16: 318–325.

    Article  CAS  Google Scholar 

  26. Hoeffer CA, Tang W, Wong H, Santillan A, Patterson RJ, Martinez LA et al. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior. Neuron 2008; 60: 832–845.

    Article  CAS  Google Scholar 

  27. Wang HQ, Nakaya Y, Du Z, Yamane T, Shirane M, Kudo T et al. Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondrial Bcl-2. Hum Mol Genet 2005; 14: 1889–1902.

    Article  CAS  Google Scholar 

  28. Gutman CR, Strittmatter WJ, Weisgraber KH, Matthew WD . Apolipoprotein E binds to and potentiates the biological activity of ciliary neurotrophic factor. J Neurosci 1997; 17: 6114–6121.

    Article  CAS  Google Scholar 

  29. Qu HY, Zhang T, Li XL, Zhou JP, Zhao BQ, Li Q et al. Transducible P11-CNTF rescues the learning and memory impairments induced by amyloid-beta peptide in mice. Eur J Pharmacol 2008; 594: 93–100.

    Article  CAS  Google Scholar 

  30. Laity JH, Lee BM, Wright PE . Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001; 11: 39–46.

    Article  CAS  Google Scholar 

  31. Maguschak KA, Ressler KJ . Beta-catenin is required for memory consolidation. Nature Neurosci 2008; 11: 1319–1326.

    Article  CAS  Google Scholar 

  32. Sasaki T, Hirabayashi J, Manya H, Kasai K, Endo T . Galectin-1 induces astrocyte differentiation, which leads to production of brain-derived neurotrophic factor. Glycobiology 2004; 14: 357–363.

    Article  CAS  Google Scholar 

  33. Cooper D, Norling LV, Perretti M . Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow. J Leukoc Biol 2008; 83: 1459–1466.

    Article  CAS  Google Scholar 

  34. La M, Cao TV, Cerchiaro G, Chilton K, Hirabayashi J, Kasai K et al. A novel biological activity for galectin-1: inhibition of leukocyte-endothelial cell interactions in experimental inflammation. Am J Pathol 2003; 163: 1505–1515.

    Article  CAS  Google Scholar 

  35. Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 2003; 22: 3307–3318.

    Article  CAS  Google Scholar 

  36. Zhang JY, Liu SJ, Li HL, Wang JZ . Microtubule-associated protein tau is a substrate of ATP/Mg(2+)-dependent proteasome protease system. J Neural Transm 2005; 112: 547–555.

    Article  CAS  Google Scholar 

  37. Lopez Salon M, Pasquini L, Besio Moreno M, Pasquini JM, Soto E . Relationship between beta-amyloid degradation and the 26S proteasome in neural cells. Exp Neurol 2003; 180: 131–143.

    Article  CAS  Google Scholar 

  38. Cecarini V, Bonfili L, Amici M, Angeletti M, Keller JN, Eleuteri AM . Amyloid peptides in different assembly states and related effects on isolated and cellular proteasomes. Brain Res 2008; 1209: 8–18.

    Article  CAS  Google Scholar 

  39. Hoglinger GU, Carrard G, Michel PP, Medja F, Lombes A, Ruberg M et al. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. J Neurochem 2003; 86: 1297–1307.

    Article  Google Scholar 

  40. Stutzmann GE . The pathogenesis of Alzheimer's disease is it a lifelong ‘calciumopathy’? Neuroscientist 2007; 13: 546–559.

    Article  CAS  Google Scholar 

  41. LaFerla FM . Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci 2002; 3: 862–872.

    Article  CAS  Google Scholar 

  42. Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A et al. A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer's disease risk. Cell 2008; 133: 1149–1161.

    Article  CAS  Google Scholar 

  43. Mudher A, Lovestone S . Alzheimer's disease-do tauists and baptists finally shake hands? Trends Neurosci 2002; 25: 22–26.

    Article  CAS  Google Scholar 

  44. De Strooper B, Annaert W . Where Notch and Wnt signaling meet. The presenilin hub. J Cell Biol 2001; 152: 785–794.

    Article  Google Scholar 

  45. Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P . Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005; 25: 5446–5454.

    Article  CAS  Google Scholar 

  46. Herrup K, Arendt T . Re-expression of cell cycle proteins induces neuronal cell death during Alzheimer's disease.[see comment]. J Alzheimers Dis 2002; 4: 243–247.

    Article  CAS  Google Scholar 

  47. Herrup K, Neve R, Ackerman SL, Copani A . Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 2004; 24: 9232–9239.

    Article  CAS  Google Scholar 

  48. Yang Y, Mufson EJ, Herrup K . Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci 2003; 23: 2557–2563.

    Article  CAS  Google Scholar 

  49. Mattson MP, Keller JN, Begley JG . Evidence for synaptic apoptosis. Exp Neurol 1998; 153: 35–48.

    Article  CAS  Google Scholar 

  50. Albrecht S, Bourdeau M, Bennett D, Mufson EJ, Bhattacharjee M, LeBlanc AC . Activation of caspase-6 in aging and mild cognitive impairment. Am J Pathol 2007; 170: 1200–1209.

    Article  CAS  Google Scholar 

  51. Zhong N, Scearce-Levie K, Ramaswamy G, Weisgraber KH . Apolipoprotein E4 domain interaction: synaptic and cognitive deficits in mice. Alzheimers Dement 2008; 4: 179–192.

    Article  CAS  Google Scholar 

  52. Mahley RW, Huang Y . Apolipoprotein (apo) E4 and Alzheimer's disease: unique conformational and biophysical properties of apoE4 can modulate neuropathology. Acta Neurologica Scandinavica Supplementum 2006; 185: 8–14.

    Article  CAS  Google Scholar 

  53. Reddy PH, Beal MF . Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res Rev 2005; 49: 618–632.

    Article  CAS  Google Scholar 

  54. Lin MT, Beal MF . Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443: 787–795.

    Article  CAS  Google Scholar 

  55. Starkov AA, Beal FM . Portal to Alzheimer's disease.[comment]. Nat Med 2008; 14: 1020–1021.

    Article  CAS  Google Scholar 

  56. Smith MA, Drew KL, Nunomura A, Takeda A, Hirai K, Zhu X et al. Amyloid-beta, tau alterations and mitochondrial dysfunction in Alzheimer disease: the chickens or the eggs? Neurochem Int 2002; 40: 527–531.

    Article  CAS  Google Scholar 

  57. Andersen JK . Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004; 10 (Suppl): S18–S25.

    Article  Google Scholar 

  58. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A et al. Alzheimer's disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 2008; 105: 4441–4446.

    Article  CAS  Google Scholar 

  59. Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F et al. Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Pro Natl Acad Sci USA 2009; 106: 20057–20062.

    Article  CAS  Google Scholar 

  60. Hardy J, Selkoe DJ . The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.[see comment]. [published erratum appears in Science 2002; 297: 2209] Science 2002; 297: 353–356.

    Article  CAS  Google Scholar 

  61. Xu PT, Li YJ, Qin XJ, Scherzer CR, Xu H, Schmechel DE et al. Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Neurobiol Dis 2006; 21: 256–275.

    Article  CAS  Google Scholar 

  62. Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Ramsey K et al. Altered neuronal gene expression in brain regions differentially affected by Alzheimer's disease: a reference data set. Physiol Genom 2008; 33: 240–256.

    Article  CAS  Google Scholar 

  63. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW . Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 2004; 101: 2173–2178.

    Article  CAS  Google Scholar 

  64. Ginsberg SD, Hemby SE, Lee VM, Eberwine JH, Trojanowski JQ . Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann Neurol 2000; 48: 77–87.

    Article  CAS  Google Scholar 

  65. Dunckley T, Beach TG, Ramsey KE, Grover A, Mastroeni D, Walker DG et al. Gene expression correlates of neurofibrillary tangles in Alzheimer's disease. Neurobiol Aging 2006; 27: 1359–1371.

    Article  CAS  Google Scholar 

  66. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci USA 2004; 101: 284–289.

    Article  CAS  Google Scholar 

  67. Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC et al. Patterns of brain activation in people at risk for Alzheimer's disease.[see comment]. N Engl J Med 2000; 343: 450–456.

    Article  CAS  Google Scholar 

  68. Caselli RJ, Dueck AC, Osborne D, Sabbagh MN, Connor DJ, Ahern GL et al. Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N Engl J Med 2009; 361: 255–263.

    Article  CAS  Google Scholar 

  69. Palop JJ, Chin J, Mucke L . A network dysfunction perspective on neurodegenerative diseases. Nature 2006; 443: 768–773.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Richard Simon for providing expert statistical advice and Ms Amy Deep-Soboslay and Dr Llewellyn Bigelow for post-mortem patient screening and diagnosis. We thank Mr Brady Kirchberg for providing expertise in graphical display. We also thank Dr Franak Batliwalla and Ms Aarti Damle, members of the Feinstein Institute's microarray core facility, for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Conejero-Goldberg.

Ethics declarations

Competing interests

TG has consulted for Merck and GSK. He receives royalties for use of a cognitive test battery in clinical trials, the BACS. He has received an investigator initiated grant from Eisai/Pfizer. PD has received research support from and served as a consultant to Applied Neurosolutions. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conejero-Goldberg, C., Hyde, T., Chen, S. et al. Molecular signatures in post-mortem brain tissue of younger individuals at high risk for Alzheimer's disease as based on APOE genotype. Mol Psychiatry 16, 836–847 (2011). https://doi.org/10.1038/mp.2010.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.57

Keywords

This article is cited by

Search

Quick links