Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

New medications for drug addiction hiding in glutamatergic neuroplasticity

Abstract

The repeated use of drugs that directly or indirectly stimulate dopamine transmission carry addiction liability and produce enduring pathological changes in the brain circuitry that normally regulates adaptive behavioral responding to a changing environment. This circuitry is rich in glutamatergic projections, and addiction-related behaviors in animal models have been linked to impairments in excitatory synaptic plasticity. Among the best-characterized glutamatergic projection in this circuit is the prefrontal efferent to the nucleus accumbens. A variety of molecular adaptations have been identified in the prefrontal glutamate synapses in the accumbens, many of which are induced by different classes of addictive drugs. Based largely on work with cocaine, we hypothesize that the drug-induced adaptations impair synaptic plasticity in the cortico-accumbens projection, and thereby dysregulate the ability of addicts to control their drug-taking habits. Accordingly, we go on to describe the literature implicating the drug-induced changes in protein content or function that impinge upon synaptic plasticity and have been targeted in preclinical models of relapse and, in some cases, in pilot clinical trials. Based upon modeling drug-induced impairments in neuroplasticity in the cortico-accumbens pathway, we argue for a concerted effort to clinically evaluate the hypothesis that targeting glial and neuronal proteins regulating excitatory synaptic plasticity may prove beneficial in treating addiction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Substance Abuse and Mental Health Services Administration. Results from the 2009 National Survey on Drug Use and Health: Volume I. Summary of National Findings (Office of Applied Studies, NSDUH Series H-38A, HHS Publication No. SMA 10-4586Findings). Rockville, MD, 2010.

  2. Policy OoNDC. The economic costs of drug abuse in the United States: 1992-2002, vol. Publication number (207303) Executive Office of the President: Washington, DC, 2004.

  3. O’Brien C . Drug addiction and drug abuse. In: Hardman J, Limbird L, Gilman AG (eds). The Pharmacological Basis of Therapeutics. McGraw-Hill: New York, 2001, pp 621–642.

    Google Scholar 

  4. Koob GF, Volkow ND . Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35: 217–238.

    Article  PubMed  Google Scholar 

  5. Goldstein RZ, Craig AD, Bechara A, Garavan H, Childress AR, Paulus MP et al. The neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci 2009; 13: 372–380.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Verdejo-Garcia A, Bechara A . A somatic marker theory of addiction. Neuropharmacology 2009; 56 (Suppl 1): 48–62.

    Article  CAS  PubMed  Google Scholar 

  7. Li CS, Sinha R . Inhibitory control and emotional stress regulation: neuroimaging evidence for frontal-limbic dysfunction in psycho-stimulant addiction. Neurosci Biobehav Rev 2008; 32: 581–597.

    Article  PubMed  Google Scholar 

  8. Goldstein RZ, Volkow ND . Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 2002; 159: 1642–1652.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Strick PL, Dum RP, Fiez JA . Cerebellum and nonmotor function. Annu Rev Neurosci 2009; 32: 413–434.

    Article  CAS  PubMed  Google Scholar 

  10. Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 2010; 35: 591–604.

    Article  PubMed  Google Scholar 

  11. Brady KT, Verduin ML, Tolliver BK . Treatment of patients comorbid for addiction and other psychiatric disorders. Curr Psychiatry Rep 2007; 9: 374–380.

    Article  PubMed  Google Scholar 

  12. Back SE, Sonne SC, Killeen T, Dansky BS, Brady KT . Comparative profiles of women with PTSD and comorbid cocaine or alcohol dependence. Am J Drug Alcohol Abuse 2003; 29: 169–189.

    Article  PubMed  Google Scholar 

  13. Lising-Enriquez K, George TP . Treatment of comorbid tobacco use in people with serious mental illness. J Psychiatry Neurosci 2009; 34: E1–E2.

    PubMed  PubMed Central  Google Scholar 

  14. Zahm DS . An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 2000; 24: 85–105.

    Article  CAS  PubMed  Google Scholar 

  15. Gerfen CR . The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 1993; 15: 285–320.

    Article  Google Scholar 

  16. Lu X-Y, Ghasemzadeh MB, Kalivas PW . Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 1998; 82: 767–780.

    Article  CAS  PubMed  Google Scholar 

  17. Meredith GE, Pennartz CMA, Groenewegen HJ . The cellular framework for chemical signalling in the nucleus accumbens. Prog Brain Res 1993; 99: 3–24.

    Article  CAS  PubMed  Google Scholar 

  18. Kreitzer AC, Malenka RC . Striatal plasticity and basal ganglia circuit function. Neuron 2008; 60: 543–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A . Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 2010; 30: 8229–8233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lapish CC, Seamans JK, Chandler LJ . Glutamate-dopamine cotransmission and reward processing in addiction. Alcohol Clin Exp Res 2006; 30: 1451–1465.

    Article  CAS  PubMed  Google Scholar 

  21. Surmeier DJ, Ding J, Day M, Wang Z, Shen W . D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007; 30: 228–235.

    Article  CAS  PubMed  Google Scholar 

  22. Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK . Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 2005; 25: 5013–5023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anwyl R . Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Rev 1999; 29: 83–120.

    Article  CAS  PubMed  Google Scholar 

  24. Gladding CM, Fitzjohn SM, Molnar E . Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol Rev 2009; 61: 395–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fellin T . Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J Neurochem 2009; 108: 533–544.

    Article  CAS  PubMed  Google Scholar 

  26. Haydon PG, Blendy J, Moss SJ, Rob Jackson F . Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology 2009; 56 (Suppl 1): 83–90.

    Article  CAS  PubMed  Google Scholar 

  27. Bergles DE, Diamond JS, Jahr CE . Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol 1999; 9: 293–298.

    Article  CAS  PubMed  Google Scholar 

  28. Diamond JS, Jahr CE . Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. J Neurophysiol 2000; 83: 2835–2843.

    Article  CAS  PubMed  Google Scholar 

  29. Moran MM, McFarland K, Melendez RI, Kalivas PW, Seamans JK . Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 2005; 25: 6389–6393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavelier P, Attwell D . Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol 2005; 564 (Part 2): 397–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Herman MA, Jahr CE . Extracellular glutamate concentration in hippocampal slice. J Neurosci 2007; 27: 9736–9741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH . Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 2008; 90: 135–147.

    Article  CAS  PubMed  Google Scholar 

  33. Tamaru Y, Nomura S, Mizuno N, Shigemoto R . Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience 2001; 106: 481–503.

    Article  CAS  PubMed  Google Scholar 

  34. Mitrano DA, Arnold C, Smith Y . Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the nucleus accumbens of cocaine-treated rats. Neuroscience 2008; 154: 653–666.

    Article  CAS  PubMed  Google Scholar 

  35. Kalivas PW . The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009; 10: 561–572.

    CAS  PubMed  Google Scholar 

  36. Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A et al. N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 2009; 12: 182–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goto Y, Grace AA . Limbic and cortical information processing in the nucleus accumbens. Trends Neurosci 2008; 31: 552–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malenka RC, Bear MF . LTP and LTD: an embarrassment of riches. Neuron 2004; 44: 5–21.

    Article  CAS  PubMed  Google Scholar 

  39. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ . The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 2010; 33: 267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malinow R, Malenka RC . AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25: 103–126.

    Article  CAS  PubMed  Google Scholar 

  41. Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ . Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS ONE 2007; 2: e709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Xi ZX, Ramamoorthy S, Baker DA, Shen H, Samuvel DJ, Kalivas PW . Modulation of group II metabotropic glutamate receptor signaling by chronic cocaine. J Pharmacol Exp Ther 2002; 303: 608–615.

    Article  CAS  PubMed  Google Scholar 

  43. Pistis M, Muntoni AL, Pillolla G, Gessa GL . Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur J Neurosci 2002; 15: 1795–1802.

    Article  PubMed  Google Scholar 

  44. Swanson C, Baker D, Carson D, Worley P, Kalivas P . Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer 1b/c. J Neurosci 2001; 21: 9043–9052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Solinas M, Ferre S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR . Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J Neurosci 2002; 22: 6321–6324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y, Venkitaramani DV, Gladding CM, Kurup P, Molnar E, Collingridge GL et al. The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. J Neurosci 2008; 28: 10561–10566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao C, Sun X, Wolf ME . Activation of D1 dopamine receptors increases surface expression of AMPA receptors and facilitates their synaptic incorporation in cultured hippocampal neurons. J Neurochem 2006; 98: 1664–1677.

    Article  CAS  PubMed  Google Scholar 

  48. Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML et al. Activator of G-protein signaling 3: a gatekeeper of cocaine sensitization and drug-seeking. Neuron 2004; 42: 269–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yao L, McFarland K, Fan P, Jiang Z, Inoue Y, Diamond I . Activator of G protein signaling 3 regulates opiate activation of protein kinase A signaling and relapse of heroin-seeking behavior. Proc Natl Acad Sci USA 2005; 102: 8746–8751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bowers MS, Hopf FW, Chou JK, Guillory AM, Chang SJ, Janak PH et al. Nucleus accumbens AGS3 expression drives ethanol seeking through G betagamma. Proc Natl Acad Sci USA 2008; 105: 12533–12538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Szumlinski KK, Dehoff MH, Kang SH, Frys KA, Lominac KD, Klugmann M et al. Homer proteins regulate sensitivity to cocaine. Neuron 2004; 43: 401–413.

    Article  CAS  PubMed  Google Scholar 

  52. Boudreau AC, Reimers JM, Milovanovic M, Wolf ME . Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. J Neurosci 2007; 27: 10621–10635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kourrich S, Rothwell PE, Klug JR, Thomas MJ . Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci 2007; 27: 7921–7928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008; 454: 118–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang YH, Lin Y, Mu P, Lee BR, Brown TE, Wayman G et al. In vivo cocaine experience generates silent synapses. Neuron 2009; 63: 40–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shen H, Moussawi K, Zhou W, Toda S, Kalivas P . Heroin relapse requires LTP-like plasticity mediated by NR2B-containing receptors. Nat Neurosci 2011 (submitted).

  57. Madayag A, Lobner D, Kau KS, Mantsch JR, Abdulhameed O, Hearing M et al. Repeated N-acetylcysteine administration alters plasticity-dependent effects of cocaine. J Neurosci 2007; 27: 13968–13976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kau KS, Madayag A, Mantsch JR, Grier MD, Abdulhameed O, Baker DA . Blunted cystine-glutamate antiporter function in the nucleus accumbens promotes cocaine-induced drug seeking. Neuroscience 2008; 155: 530–537.

    Article  CAS  PubMed  Google Scholar 

  59. Knackstedt LA, LaRowe S, Mardikian P, Malcolm R, Upadhyaya H, Hedden S et al. The role of cystine-glutamate exchange in nicotine dependence in rats and humans. Biol Psychiatry 2009; 65: 841–845.

    Article  CAS  PubMed  Google Scholar 

  60. Moussawi K, Zhou W, Shen H, Reichel CM, See R, Carr D et al. Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc Natl Acad Sci USA 2011;108: 385–390.

    Article  CAS  PubMed  Google Scholar 

  61. De Roo M, Klauser P, Garcia PM, Poglia L, Muller D . Spine dynamics and synapse remodeling during LTP and memory processes. Prog Brain Res 2008; 169: 199–207.

    Article  CAS  PubMed  Google Scholar 

  62. Soule J, Messaoudi E, Bramham CR . Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem Soc Trans 2006; 34 (Part 4): 600–604.

    Article  CAS  PubMed  Google Scholar 

  63. Shi Y, Ethell IM . Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J Neurosci 2006; 26: 1813–1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bozdagi O, Nagy V, Kwei KT, Huntley GW . In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J Neurophysiol 2007; 98: 334–344.

    Article  CAS  PubMed  Google Scholar 

  65. Brown TE, Forquer MR, Cocking DL, Jansen HT, Harding JW, Sorg BA . Role of matrix metalloproteinases in the acquisition and reconsolidation of cocaine-induced conditioned place preference. Learn Mem 2007; 14: 214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rodriguez D, Morrison CJ, Overall CM . Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 2010; 1803: 39–54.

    Article  CAS  PubMed  Google Scholar 

  67. Desgrosellier JS, Cheresh DA . Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10: 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Berglind WJ, See RE, Fuchs RA, Ghee SM, Whitfield Jr TW . Miller SW . et al. A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats. Eur J Neurosci 2007; 26: 757–766.

    Article  PubMed  Google Scholar 

  69. Berglind WJ, Whitfield Jr TW, LaLmiere RT, Kalivas PW, McGinty JF . A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci 2009; 29: 3715–3719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Graham DL, Edwards S, Bachtell RK, Dileone RJ, Rios M, Self DW . Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 2007; 10: 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  71. Martin M, Chen BT, Hopf FW, Bowers MS, Bonci A . Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nat Neurosci 2006; 9: 868–869.

    Article  CAS  PubMed  Google Scholar 

  72. Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas PW . Extinction training after cocaine self-administration induces glutamatergic plasticity to inhibit cocaine seeking. J Neurosci 2010; 30: 7984–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M, Manzoni O et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 2010; 328: 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  74. Lewerenz J, Albrecht P, Tien ML, Henke N, Karumbayaram S, Kornblum HI et al. Induction of Nrf2 and xCT are involved in the action of the neuroprotective antibiotic ceftriaxone in vitro. J Neurochem 2009; 111: 332–343.

    Article  CAS  PubMed  Google Scholar 

  75. Knackstedt LA, Melendez RI, Kalivas PW . Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry 2010; 67: 81–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sari Y, Smith KD, Ali PK, Rebec GV . Upregulation of GLT1 attenuates cue-induced reinstatement of cocaine-seeking behavior in rats. J Neurosci 2009; 29: 9239–9243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baker DA, McFarland K, Lake RW, Shen H, Tang XC, Toda S et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 2003; 6: 743–749.

    Article  CAS  PubMed  Google Scholar 

  78. Zhou W, Kalivas PW . N-Acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry 2007; 63: 338–340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. LaRowe SD, Myrick H, Hedden S, Mardikian P, Saladin M, McRae A et al. Is cocaine desire reduced by N-acetylcysteine? Am J Psychiatry 2007; 164: 1115–1117.

    Article  PubMed  Google Scholar 

  80. Holdiness MR . Clinical pharmacokinetics of N-acetylcysteine. Clin Pharmacokinet 1991; 20: 123–134.

    Article  CAS  PubMed  Google Scholar 

  81. Ballon JS, Feifel D . A systematic review of modafinil: potential clinical uses and mechanisms of action. J Clin Psychiatry 2006; 67: 554–566.

    Article  CAS  PubMed  Google Scholar 

  82. Ferraro L, Antonelli T, O′Connor WT, Tanganelli S, Rambert FA, Fuxe K . The effects of modafinil on striatal, pallidal and nigral GABA and glutamate release in the conscious rat: evidence for a preferential inhibition of striato-pallidal GABA transmission. Neurosci Lett 1998; 253: 135–138.

    Article  CAS  PubMed  Google Scholar 

  83. Ferraro L, Antonelli T, Tanganelli S, O’Connor WT, Perez de la Mora M, Mendez-Franco J et al. The vigilance promoting drug modafinil increases extracellular glutamate levels in the medial preoptic area and the posterior hypothalamus of the conscious rat: prevention by local GABAA receptor blockade. Neuropsychopharmacology 1999; 20: 346–356.

    Article  CAS  PubMed  Google Scholar 

  84. Tahsili-Fahadan P, Carr GV, Harris GC, Aston-Jones G . Modafinil blocks reinstatement of extinguished opiate-seeking in rats: mediation by a glutamate mechanism. Neuropsychopharmacology 2010; 35: 2203–2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reichel CM, See RE . Modafinil effects on reinstatement of methamphetamine seeking in a rat model of relapse. Psychopharmacology (Berl) 2010; 210: 337–346.

    Article  CAS  Google Scholar 

  86. Tahsili-Fahadan P, Malcolm R, Aston-Jones G . Modafinil: an anti-relapse medication. Neuropsychopharmacology 2010; 35: 343–344.

    Article  PubMed  Google Scholar 

  87. Dackis CA, Kampman KM, Lynch KG, Pettinati HM, O′Brien CP . A double-blind, placebo-controlled trial of modafinil for cocaine dependence. Neuropsychopharmacology 2005; 30: 205–211.

    Article  CAS  PubMed  Google Scholar 

  88. Volkow ND, Fowler JS, Logan J, Alexoff D, Zhu W, Telang F et al. Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications. JAMA 2009; 301: 1148–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liechti ME, Lhuillier L, Kaupmann K, Markou A . Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. J Neurosci 2007; 27: 9077–9085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gass JT, Olive MF . Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75: 218–265.

    Article  CAS  PubMed  Google Scholar 

  91. Adewale AS, Platt DM, Spealman RD . Pharmacological stimulation of group ii metabotropic glutamate receptors reduces cocaine self-administration and cocaine-induced reinstatement of drug seeking in squirrel monkeys. J Pharmacol Exp Ther 2006; 318: 922–931.

    Article  CAS  PubMed  Google Scholar 

  92. Xi ZX, Li X, Peng XQ, Li J, Chun L, Gardner EL et al. Inhibition of NAALADase by 2-PMPA attenuates cocaine-induced relapse in rats: a NAAG-mGluR2/3-mediated mechanism. J Neurochem 2010; 112: 564–576.

    Article  CAS  PubMed  Google Scholar 

  93. Bossert JM, Gray SM, Lu L, Shaham Y . Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 2006; 31: 2197–2209.

    Article  CAS  PubMed  Google Scholar 

  94. Baptista MA, Martin-Fardon R, Weiss F . Preferential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on conditioned reinstatement versus primary reinforcement: comparison between cocaine and a potent conventional reinforcer. J Neurosci 2004; 24: 4723–4727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peters J, Kalivas PW . The group II metabotropic glutamate receptor agonist, LY379268, inhibits both cocaine- and food-seeking behavior in rats. Psychopharmacology (Berl) 2006; 186: 143–149.

    Article  CAS  Google Scholar 

  96. Markou A . Metabotropic glutamate receptor antagonists: novel therapeutics for nicotine dependence and depression? Biol Psychiatry 2007; 61: 17–22.

    Article  CAS  PubMed  Google Scholar 

  97. Kenny PJ, Gasparini F, Markou A . Group II metabotropic and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors regulate the deficit in brain reward function associated with nicotine withdrawal in rats. J Pharmacol Exp Ther 2003; 306: 1068–1076.

    Article  CAS  PubMed  Google Scholar 

  98. Szumlinski KK, Kalivas PW, Worley PF . Homer proteins: implications for neuropsychiatric disorders. Curr Opin Neurobiol 2006; 16: 251–257.

    Article  CAS  PubMed  Google Scholar 

  99. Chiamulera C, Epping-Jordan M, Zocchi A, Marcon C, Cottiny C, Tacconi S et al. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 2001; 4: 873–874.

    Article  CAS  PubMed  Google Scholar 

  100. Olive MF . Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. Eur J Pharmacol 2010; 639: 47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zerbib F, Keywood C, Strabach G . Efficacy, tolerability and pharmacokinetics of a modified release formulation of ADX10059, a negative allosteric modulator of metabotropic glutamate receptor 5: an esophageal pH-impedance study in healthy subjects. Neurogastroenterol Motil 2010; 22: 859–865, e231.

    Article  CAS  PubMed  Google Scholar 

  102. Berry-Kravis E, Hessle D, Coffey S, Nervey C, Scheider A, Yuhas J et al. A pilot open label, single dose trial of fenobam in adults with fragile X sindrome. J Med Genet 2009; 46: 266–271.

    Article  CAS  PubMed  Google Scholar 

  103. D’Ascenzo M, Fellin T, Terunuma M, Revilla-Sanchez R, Meaney DF, Auberson YP et al. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci USA 2007; 104: 1995–2000.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. Wolf ME . The Bermuda Triangle of cocaine-induced neuroadaptations. Trends Neurosci 2010; 33: 391–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. LaLumiere RT, Kalivas PW . Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 2008; 28: 3170–3177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cornish J, Kalivas P . Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 2000; 20: RC89, (81-85).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Di Ciano P, Everitt BJ . Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 2001; 25: 341–360.

    Article  CAS  PubMed  Google Scholar 

  108. Backstrom P, Hyytia P . Involvement of AMPA/kainate, NMDA, and mGlu5 receptors in the nucleus accumbens core in cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2007; 192: 571–580.

    Article  CAS  Google Scholar 

  109. Sanchis-Segura C, Borchardt T, Vengeliene V, Zghoul T, Bachteler D, Gass P et al. Involvement of the AMPA receptor GluR-C subunit in alcohol-seeking behavior and relapse. J Neurosci 2006; 26: 1231–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Di Ciano P, Everitt BJ . Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats. J Neurosci 2004; 24: 7167–7173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bowers MS, Chen BT, Bonci A . AMPA receptor synaptic plasticity induced by psychostimulants: the past, present, and therapeutic future. Neuron 2010; 67: 11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rubio G, Ponce G, Jimenez-Arriero MA, Palomo T, Manzanares J, Ferre F . Effects of topiramate in the treatment of alcohol dependence. Pharmacopsychiatry 2004; 37: 37–40.

    Article  CAS  PubMed  Google Scholar 

  113. Kampman KM, Pettinati H, Lynch KG, Dackis C, Sparkman T, Weigley C et al. A pilot trial of topiramate for the treatment of cocaine dependence. Drug Alcohol Depend 2004; 75: 233–240.

    Article  CAS  PubMed  Google Scholar 

  114. Brown ES, Nejtek VA, Perantie DC, Orsulak PJ, Bobadilla L . Lamotrigine in patients with bipolar disorder and cocaine dependence. J Clin Psychiatry 2003; 64: 197–201.

    Article  CAS  PubMed  Google Scholar 

  115. O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES . AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord 2004; 3: 181–194.

    Article  PubMed  Google Scholar 

  116. Quirk JC, Nisenbaum ES . LY404187: a novel positive allosteric modulator of AMPA receptors. CNS Drug Rev 2002; 8: 255–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. O’Neill MJ, Murray TK, Whalley K, Ward MA, Hicks CA, Woodhouse S et al. Neurotrophic actions of the novel AMPA receptor potentiator, LY404187, in rodent models of Parkinson's disease. Eur J Pharmacol 2004; 486: 163–174.

    Article  PubMed  CAS  Google Scholar 

  118. Lauterborn JC, Pineda E, Chen LY, Ramirez EA, Lynch G, Gall CM . Ampakines cause sustained increases in brain-derived neurotrophic factor signaling at excitatory synapses without changes in AMPA receptor subunit expression. Neuroscience 2009; 159: 283–295.

    Article  CAS  PubMed  Google Scholar 

  119. Larson J, Quach CN, LeDuc BQ, Nguyen A, Rogers GA, Lynch G . Effects of an AMPA receptor modulator on methamphetamine-induced hyperactivity in rats. Brain Res 1996; 738: 353–356.

    Article  CAS  PubMed  Google Scholar 

  120. Hess US, Whalen SP, Sandoval LM, Lynch G, Gall CM . Ampakines reduce methamphetamine-driven rotation and activate neocortex in a regionally selective fashion. Neuroscience 2003; 121: 509–521.

    Article  CAS  PubMed  Google Scholar 

  121. Jones N, Messenger MJ, O’Neill MJ, Oldershaw A, Gilmour G, Simmons RM et al. AMPA receptor potentiation can prevent ethanol-induced intoxication. Neuropsychopharmacology 2008; 33: 1713–1723.

    Article  CAS  PubMed  Google Scholar 

  122. Murray TK, Whalley K, Robinson CS, Ward MA, Hicks CA, Lodge D et al. LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson's disease. J Pharmacol Exp Ther 2003; 306: 752–762.

    Article  CAS  PubMed  Google Scholar 

  123. Callaghan RC, Cunningham JK, Sajeev G, Kish SJ . Incidence of Parkinson's disease among hospital patients with methamphetamine-use disorders. Mov Disord 2010; 25: 2333–2339.

    Article  PubMed  Google Scholar 

  124. Ma YY, Cepeda C, Cui CL . The role of striatal NMDA receptors in drug addiction. Int Rev Neurobiol 2009; 89: 131–146.

    Article  CAS  PubMed  Google Scholar 

  125. Cornish JL, Duffy P, Kalivas PW . A role of nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 1999; 93: 1359–1368.

    Article  CAS  PubMed  Google Scholar 

  126. Myers KM, Carlezon Jr WA, Davis M . Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology 2011; 36: 274–293.

    Article  CAS  PubMed  Google Scholar 

  127. Santa Ana EJ, Rounsaville BJ, Frankforter TL, Nich C, Babuscio T, Poling J et al. D-Cycloserine attenuates reactivity to smoking cues in nicotine dependent smokers: a pilot investigation. Drug Alcohol Depend 2009; 104: 220–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Price KL, McRae-Clark AL, Saladin ME, Maria MM, DeSantis SM, Back SE et al. D-cycloserine and cocaine cue reactivity: preliminary findings. Am J Drug Alcohol Abuse 2009; 35: 434–438.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mao LM, Wang W, Chu XP, Zhang GC, Liu XY, Yang YJ et al. Stability of surface NMDA receptors controls synaptic and behavioral adaptations to amphetamine. Nat Neurosci 2009; 12: 602–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gogas KR . Glutamate-based therapeutic approaches: NR2B receptor antagonists. Curr Opin Pharmacol 2006; 6: 68–74.

    Article  CAS  PubMed  Google Scholar 

  131. Bowers MS, Chen BT, Chou JK, Osborne MP, Gass JT, See RE et al. Acamprosate attenuates cocaine- and cue-induced reinstatement of cocaine-seeking behavior in rats. Psychopharmacology (Berl) 2007; 195: 397–406.

    Article  CAS  Google Scholar 

  132. Rosner S, Hackl-Herrwerth A, Leucht S, Lehert P, Vecchi S, Soyka M . Acamprosate for alcohol dependence. Cochrane Database Syst Rev 2010 (9): CD004332.

  133. Amen SL, Piacentine LB, Ahmad ME, Li SJ, Mantsch JR, Risinger RC et al. Repeated N-acetyl cysteine reduces cocaine seeking in rodents and craving in cocaine-dependent humans. Neuropsychopharmacology 2011; 36: 871–878.

    Article  CAS  PubMed  Google Scholar 

  134. Fuster JM . The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe. Lippincott-Raven: Philadelphia, 1997.

    Google Scholar 

  135. Haber SN . The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 2003; 26: 317–330.

    Article  PubMed  Google Scholar 

  136. D’Esposito M, Chen AJ . Neural mechanisms of prefrontal cortical function: implications for cognitive rehabilitation. Prog Brain Res 2006; 157: 123–139.

    Article  PubMed  Google Scholar 

  137. Volkow ND, Fowler JS, Wang GJ, Telang F, Logan J, Jayne M et al. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers. Neuroimage 2010; 49: 2536–2543.

    Article  PubMed  Google Scholar 

  138. Goldstein RZ, Alia-Klein N, Tomasi D, Carrillo JH, Maloney T, Woicik PA et al. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proc Natl Acad Sci USA 2009; 106: 9453–9458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schultz W . Getting formal with dopamine and reward. Neuron 2002; 36: 241–263.

    Article  CAS  PubMed  Google Scholar 

  140. Ungless M, Whistler J, Malenka R, Bonci A . Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 2001; 411: 583–587.

    Article  CAS  PubMed  Google Scholar 

  141. Bellone C, Luscher C . Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 2006; 9: 636–641.

    Article  CAS  PubMed  Google Scholar 

  142. Stuber GD, Klanker M, de Ridder B, Bowers MS, Joosten RN, Feenstra MG et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 2008; 321: 1690–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zweifel LS, Argilli E, Bonci A, Palmiter RD . Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron 2008; 59: 486–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Engblom D, Bilbao A, Sanchis-Segura C, Dahan L, Perreau-Lenz S, Balland B et al. Glutamate receptors on dopamine neurons control the persistence of cocaine seeking. Neuron 2008; 59: 497–508.

    Article  CAS  PubMed  Google Scholar 

  145. Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 2009; 12: 1036–1041.

    Article  CAS  PubMed  Google Scholar 

  146. Chen BT, Bowers MS, Martin M, Hopf FW, Guillory AM, Carelli RM et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 2008; 59: 288–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ledford CC, Fuchs RA, See RE . Potentiated reinstatement of cocaine-seeking behavior following D-amphetamine infusion into the basolateral amygdala. Neuropsychopharmacology 2003; 28: 1721–1729.

    Article  CAS  PubMed  Google Scholar 

  148. McFarland K, Kalivas PW . The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 2001; 21: 8655–8663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Park WK, Bari AA, Jey AR, Anderson SM, Spealman RD, Rowlett JK et al. Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J Neurosci 2002; 22: 2916–2925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Anderson SM, Bari AA, Pierce RC . Administration of the D1-like dopamine receptor antagonist SCH-23390 into the medial nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug-seeking behavior in rats. Psychopharmacology (Berl) 2003; 168: 132–138.

    Article  CAS  Google Scholar 

  151. Huang CC, Lin HJ, Hsu KS . Repeated cocaine administration promotes long-term potentiation induction in rat medial prefrontal cortex. Cereb Cortex 2007; 17: 1877–1888.

    Article  PubMed  Google Scholar 

  152. Fu Y, Pollandt S, Liu J, Krishnan B, Genzer K, Orozco-Cabal L et al. Long-term potentiation (LTP) in the central amygdala (CeA) is enhanced after prolonged withdrawal from chronic cocaine and requires CRF1 receptors. J Neurophysiol 2007; 97: 937–941.

    Article  CAS  PubMed  Google Scholar 

  153. Tye KM, Stuber GD, de Ridder B, Bonci A, Janak PH . Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 2008; 453: 1253–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Melis M, Camarini R, Ungless MA, Bonci A . Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J Neurosci 2002; 22: 2074–2082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P W Kalivas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalivas, P., Volkow, N. New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry 16, 974–986 (2011). https://doi.org/10.1038/mp.2011.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.46

Keywords

This article is cited by

Search

Quick links