Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders

Abstract

In recent years, an increasing number of neuroimaging studies have sought to identify the brain anomalies associated with mood and anxiety disorders. The results of such studies could have significant implications for the development of novel treatments for these disorders. A challenge currently facing the field is to assimilate the large and growing corpus of imaging data to inform a systems-level model of the neural circuitry underlying the disorders. One prominent theoretical perspective highlights the top–down inhibition of amygdala by ventromedial prefrontal cortex (vmPFC) as a crucial neural mechanism that may be defective in certain mood and anxiety disorders, such as major depression and post-traumatic stress disorder. In this article, we provide a critical review of animal and human data related to this model. In particular, we emphasize the considerable body of research that challenges the veracity (or at least completeness) of the predominant model. We propose a framework for constructing a more comprehensive model of vmPFC function, with the goal of fostering further progress in understanding the neuropathophysiological basis of mood and anxiety disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Drevets WC, Price JL, Furey ML . Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 2008; 213: 93–118.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fredericks CA, Kalmar JH, Blumberg HP . The role of the ventral prefrontal cortex in mood disorders. In: Zald DH, Rauch SL (eds) The Orbitofrontal Cortex. Oxford University Press: New York, 2006 pp 544–577.

    Google Scholar 

  3. Milad MR, Rauch SL . The orbitofrontal cortex and anxiety disorders. In: Zald DH, Rauch SL (eds) The Orbitofrontal Cortex. Oxford University Press: New York, 2006; 523–543.

    Chapter  Google Scholar 

  4. Price JL, Drevets WC . Neurocircuitry of mood disorders. Neuropsychopharmacology 2010; 35: 192–216.

    Article  PubMed  Google Scholar 

  5. Amting JM, Greening SG, Mitchell DG . Multiple mechanisms of consciousness: the neural correlates of emotional awareness. J Neurosci 2010; 30: 10039–10047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jovanovic T, Ressler KJ . How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 2010; 167: 648–662.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rauch SL, Shin LM, Phelps EA . Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future. Biol Psychiatry 2006; 60: 376–382.

    Article  PubMed  Google Scholar 

  8. Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Pare D . Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience 2003; 132: 943–953.

    Article  CAS  Google Scholar 

  9. Davidson RJ . Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 2002; 51: 68–80.

    Article  PubMed  Google Scholar 

  10. Milad MR, Quirk GJ . Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002; 420: 70–74.

    Article  CAS  PubMed  Google Scholar 

  11. Milad MR, Rauch SL, Pitman RK, Quirk GJ . Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 2006; 73: 61–71.

    Article  PubMed  Google Scholar 

  12. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL . Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry 2007; 62: 446–454.

    Article  PubMed  Google Scholar 

  13. Morgan MA, Romanski LM, LeDoux JE . Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 1993; 163: 109–113.

    Article  CAS  PubMed  Google Scholar 

  14. Peters J, Kalivas PW, Quirk GJ . Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 2009; 16: 279–288.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Phelps EA, Delgado MR, Nearing KI, LeDoux JE . Extinction learning in humans: role of the amygdala and vmPFC. Neuron 2004; 43: 897–905.

    Article  CAS  PubMed  Google Scholar 

  16. Quirk GJ, Beer JS . Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol 2006; 16: 723–727.

    Article  CAS  PubMed  Google Scholar 

  17. Quirk GJ, Garcia R, Gonzalez-Lima F . Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 2006; 60: 337–343.

    Article  PubMed  Google Scholar 

  18. Quirk GJ, Likhtik E, Pelletier JG, Pare D . Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 2003; 23: 8800–8807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quirk GJ, Martinez KG, Nazario Rodriguez LL . Translating findings from basic fear research to clinical psychiatry in Puerto Rico. P R Health Sci J 2007; 26: 321–328.

    PubMed  PubMed Central  Google Scholar 

  20. Quirk GJ, Mueller D . Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 2008; 33: 56–72.

    Article  PubMed  Google Scholar 

  21. Rosenkranz JA, Moore H, Grace AA . The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 2003; 23: 11054–11064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sierra-Mercado Jr D, Corcoran KA, Lebron-Milad K, Quirk GJ . Inactivation of the ventromedial prefrontal cortex reduces expression of conditioned fear and impairs subsequent recall of extinction. Eur J Neurosci 2006; 24: 1751–1758.

    Article  PubMed  Google Scholar 

  23. Sotres-Bayon F, Bush DE, LeDoux JE . Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learn Mem 2004; 11: 525–535.

    Article  PubMed  Google Scholar 

  24. Sotres-Bayon F, Cain CK, LeDoux JE . Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 2006; 60: 329–336.

    Article  PubMed  Google Scholar 

  25. Sotres-Bayon F, Quirk GJ . Prefrontal control of fear: more than just extinction. Curr Opin Neurobiol 2010; 20: 231–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Urry HL, van Reekum CM, Johnstone T, Kalin NH, Thurow ME, Schaefer HS et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J Neurosci 2006; 26: 4415–4425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ . Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 2006; 13: 728–733.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gabbott PL, Warner TA, Jays PR, Bacon SJ . Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 2003; 993: 59–71.

    Article  CAS  PubMed  Google Scholar 

  29. Slattery DA, Neumann I, Cryan JF . Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat. J Psychopharmacol; published online 8 June 2010 [e-pub ahead of print].

  30. Brodmann K . Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth: Leipzig, 1909 x, 324 p.pp.

    Google Scholar 

  31. Gary LJ . Brodmann's ‘Localization in the Cerebral Cortex’. Smith-Gordon: London, 1994.

    Google Scholar 

  32. Ongur D, Ferry AT, Price JL . Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 2003; 460: 425–449.

    Article  PubMed  Google Scholar 

  33. Barbas H, Saha S, Rempel-Clower N, Ghashghaei T . Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 2003; 4: 25.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carmichael ST, Price JL . Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 1996; 371: 179–207.

    Article  CAS  PubMed  Google Scholar 

  35. Chiba T, Kayahara T, Nakano K . Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 2001; 888: 83–101.

    Article  CAS  PubMed  Google Scholar 

  36. Freedman LJ, Insel TR, Smith Y . Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J Comp Neurol 2000; 421: 172–188.

    Article  CAS  PubMed  Google Scholar 

  37. Ghashghaei HT, Barbas H . Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 2002; 115: 1261–1279.

    Article  CAS  PubMed  Google Scholar 

  38. Ongur D, Price JL . The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000; 10: 206–219.

    Article  CAS  PubMed  Google Scholar 

  39. Vertes RP . Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 2004; 51: 32–58.

    Article  CAS  PubMed  Google Scholar 

  40. Burgos-Robles A, Vidal-Gonzalez I, Quirk GJ . Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. J Neurosci 2009; 29: 8474–8482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Laurent V, Westbrook RF . Inactivation of the infralimbic but not the prelimbic cortex impairs consolidation and retrieval of fear extinction. Learn Mem 2009; 16: 520–529.

    Article  PubMed  Google Scholar 

  42. Quirk GJ, Russo GK, Barron JL, Lebron K . The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 2000; 20: 6225–6231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kalisch R, Korenfeld E, Stephan KE, Weiskopf N, Seymour B, Dolan RJ . Context-dependent human extinction memory is mediated by a ventromedial prefrontal and hippocampal network. J Neurosci 2006; 26: 9503–9511.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL . A role for the human dorsal anterior cingulate cortex in fear expression. Biol Psychiatry 2007; 62: 1191–1194.

    Article  PubMed  Google Scholar 

  45. Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Pare D . Amygdala intercalated neurons are required for expression of fear extinction. Nature 2008; 454: 642–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jungling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD et al. Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 2008; 59: 298–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ongur D, An X, Price JL . Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol 1998; 401: 480–505.

    Article  CAS  PubMed  Google Scholar 

  48. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2007; 62: 429–437.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Keedwell P, Drapier D, Surguladze S, Giampietro V, Brammer M, Phillips M . Neural markers of symptomatic improvement during antidepressant therapy in severe depression: subgenual cingulate and visual cortical responses to sad, but not happy, facial stimuli are correlated with changes in symptom score. J Psychopharmacol 2009; 23: 775–788.

    Article  CAS  PubMed  Google Scholar 

  50. Matthews SC, Strigo IA, Simmons AN, Yang TT, Paulus MP . Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. J Affect Disord 2008; 111: 13–20.

    Article  PubMed  Google Scholar 

  51. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 2000; 48: 830–843.

    Article  CAS  PubMed  Google Scholar 

  52. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45: 651–660.

    CAS  PubMed  Google Scholar 

  53. Drevets WC, Bogers W, Raichle ME . Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 2002; 12: 527–544.

    Article  CAS  PubMed  Google Scholar 

  54. Drevets WC . Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001; 11: 240–249.

    Article  CAS  PubMed  Google Scholar 

  55. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA . Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 2001; 50: 651–658.

    Article  CAS  PubMed  Google Scholar 

  56. Kross E, Davidson M, Weber J, Ochsner K . Coping with emotions past: the neural bases of regulating affect associated with negative autobiographical memories. Biol Psychiatry 2009; 65: 361–366.

    Article  PubMed  Google Scholar 

  57. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA et al. Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999; 156: 675–682.

    CAS  PubMed  Google Scholar 

  58. Zald DH, Mattson DL, Pardo JV . Brain activity in ventromedial prefrontal cortex correlates with individual differences in negative affect. Proc Natl Acad Sci USA 2002; 99: 2450–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kawasaki H, Adolphs R, Oya H, Kovach C, Damasio H, Kaufman O et al. Analysis of single-unit responses to emotional scenes in human ventromedial prefrontal cortex. J Cogn Neurosci 2005; 17: 1509–1518.

    Article  PubMed  Google Scholar 

  60. McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL . Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 2004; 115: 1239–1248.

    Article  PubMed  Google Scholar 

  61. Koenigs M, Huey ED, Calamia M, Raymont V, Tranel D, Grafman J . Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. J Neurosci 2008; 28: 12341–12348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scopinho AA, Scopinho M, Lisboa SF, Correa FM, Guimaraes FS, Joca SR . Acute reversible inactivation of the ventral medial prefrontal cortex induces antidepressant-like effects in rats. Behav Brain Res 2010; 214: 437–442.

    Article  PubMed  Google Scholar 

  63. Etkin A, Wager TD . Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 2007; 164: 1476–1488.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB et al. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch Gen Psychiatry 2004; 61: 168–176.

    Article  PubMed  Google Scholar 

  65. Koenigs M, Huey ED, Raymont V, Cheon B, Solomon J, Wassermann EM et al. Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nat Neurosci 2008; 11: 232–237.

    Article  CAS  PubMed  Google Scholar 

  66. Morey RA, Petty CM, Cooper DA, Labar KS, McCarthy G . Neural systems for executive and emotional processing are modulated by symptoms of posttraumatic stress disorder in Iraq War veterans. Psychiatry Res 2008; 162: 59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pannu Hayes J, Labar KS, Petty CM, McCarthy G, Morey RA . Alterations in the neural circuitry for emotion and attention associated with posttraumatic stress symptomatology. Psychiatry Res 2009; 172: 7–15.

    Article  PubMed  Google Scholar 

  68. Simpson Jr JR, Drevets WC, Snyder AZ, Gusnard DA, Raichle ME . Emotion-induced changes in human medial prefrontal II cortex:. During anticipatory anxiety. Proc Natl Acad Sci USA 2001; 98: 688–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blanchard EB, Kolb LC, Pallmeyer TP, Gerardi RJ . A psychophysiological study of post traumatic stress disorder in Vietnam veterans. Psychiatr Q 1982; 54: 220–229.

    Article  CAS  PubMed  Google Scholar 

  70. Liberzon I, Abelson JL, Flagel SB, Raz J, Young EA . Neuroendocrine and psychophysiologic responses in PTSD: a symptom provocation study. Neuropsychopharmacology 1999; 21: 40–50.

    Article  CAS  PubMed  Google Scholar 

  71. McFall ME, Murburg MM, Ko GN, Veith RC . Autonomic responses to stress in Vietnam combat veterans with posttraumatic stress disorder. Biol Psychiatry 1990; 27: 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  72. Pitman RK, Orr SP, Forgue DF, de Jong JB, Claiborn JM . Psychophysiologic assessment of posttraumatic stress disorder imagery in Vietnam combat veterans. Arch Gen Psychiatry 1987; 44: 970–975.

    Article  CAS  PubMed  Google Scholar 

  73. Alpers GW, Abelson JL, Wilhelm FH, Roth WT . Salivary cortisol response during exposure treatment in driving phobics. Psychosom Med 2003; 65: 679–687.

    Article  PubMed  Google Scholar 

  74. Condren RM, O′Neill A, Ryan MC, Barrett P, Thakore JH . HPA axis response to a psychological stressor in generalised social phobia. Psychoneuroendocrinology 2002; 27: 693–703.

    Article  CAS  PubMed  Google Scholar 

  75. Nesse RM, Curtis GC, Thyer BA, McCann DS, Huber-Smith MJ, Knopf RF . Endocrine and cardiovascular responses during phobic anxiety. Psychosom Med 1985; 47: 320–332.

    Article  CAS  PubMed  Google Scholar 

  76. Ohman A, Soares JJ . “Unconscious anxiety″: phobic responses to masked stimuli. J Abnorm Psychol 1994; 103: 231–240.

    Article  CAS  PubMed  Google Scholar 

  77. Carney RM, Freedland KE, Veith RC . Depression, the autonomic nervous system, and coronary heart disease. Psychosom Med 2005; 67 (Suppl 1): S29–S33.

    Article  PubMed  Google Scholar 

  78. Young AH . Cortisol in mood disorders. Stress 2004; 7: 205–208.

    Article  CAS  PubMed  Google Scholar 

  79. Young AH . Antiglucocoticoid treatments for depression. Aust N Z J Psychiatry 2006; 40: 402–405.

    Article  PubMed  Google Scholar 

  80. Feldman S, Conforti N, Weidenfeld J . Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neurosci Biobehav Rev 1995; 19: 235–240.

    Article  CAS  PubMed  Google Scholar 

  81. Jankord R, Herman JP . Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann NY Acad Sci 2008; 1148: 64–73.

    Article  PubMed  Google Scholar 

  82. Radley JJ, Arias CM, Sawchenko PE . Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci 2006; 26: 12967–12976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jahn AL, Fox AS, Abercrombie HC, Shelton SE, Oakes TR, Davidson RJ et al. Subgenual prefrontal cortex activity predicts individual differences in hypothalamic-pituitary-adrenal activity across different contexts. Biol Psychiatry 2010; 67: 175–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baklavadzhyan OG, Pogosyan NL, Arshakyan AV, Darbinyan AG, Khachatryan AV, Nikogosyan TG . Studies of the role of the central nucleus of the amygdala in controlling cardiovascular functions. Neurosci Behav Physiol 2000; 30: 231–236.

    Article  CAS  PubMed  Google Scholar 

  85. Hoffman KL, Gothard KM, Schmid MC, Logothetis NK . Facial-expression and gaze-selective responses in the monkey amygdala. Curr Biol 2007; 17: 766–772.

    Article  CAS  PubMed  Google Scholar 

  86. Iwata J, Chida K, LeDoux JE . Cardiovascular responses elicited by stimulation of neurons in the central amygdaloid nucleus in awake but not anesthetized rats resemble conditioned emotional responses. Brain Res 1987; 418: 183–188.

    Article  CAS  PubMed  Google Scholar 

  87. Kapp BS, Frysinger RC, Gallagher M, Haselton JR . Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiol Behav 1979; 23: 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  88. Pascoe JP, Kapp BS . Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit. Behav Brain Res 1985; 16: 117–133.

    Article  CAS  PubMed  Google Scholar 

  89. Wager TD, van Ast VA, Hughes BL, Davidson ML, Lindquist MA, Ochsner KN . Brain mediators of cardiovascular responses to social threat, part II: Prefrontal-subcortical pathways and relationship with anxiety. Neuroimage 2009; 47: 836–851.

    Article  PubMed  Google Scholar 

  90. Damasio AR, Tranel D, Damasio H . Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behav Brain Res 1990; 41: 81–94.

    Article  CAS  PubMed  Google Scholar 

  91. Tavares RF, Correa FM, Resstel LB . Opposite role of infralimbic and prelimbic cortex in the tachycardiac response evoked by acute restraint stress in rats. J Neurosci Res 2009; 87: 2601–2607.

    Article  CAS  PubMed  Google Scholar 

  92. Powell DA, Watson K, Maxwell B . Involvement of subdivisions of the medial prefrontal cortex in learned cardiac adjustments in rabbits. Behav Neurosci 1994; 108: 294–307.

    Article  CAS  PubMed  Google Scholar 

  93. Lofving B . Cardiovascular adjustments induced from the rostral cingulate gyrus with special reference to sympatho-inhibitory mechanisms. Acta Physiol Scand Suppl 1961; 53: 1–82.

    Article  CAS  PubMed  Google Scholar 

  94. Kaada BR . Somato-motor, autonomic and electrocorticographic responses to electrical stimulation of rhinencephalic and other structures in primates, cat, and dog; a study of responses from the limbic, subcallosal, orbito-insular, piriform and temporal cortex, hippocampus-fornix and amygdala. Acta Physiol Scand Suppl 1951; 24: 1–262.

    Article  CAS  PubMed  Google Scholar 

  95. Kaada BR, Pribram KH, Epstein JA . Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus; a preliminary report. J Neurophysiol 1949; 12: 347–356.

    Article  CAS  PubMed  Google Scholar 

  96. Showers MJ, Crosby EC . Somatic and visceral responses from the cingulate gyrus. Neurology 1958; 8: 561–565.

    Article  CAS  PubMed  Google Scholar 

  97. An X, Bandler R, Ongur D, Price JL . Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol 1998; 401: 455–479.

    Article  CAS  PubMed  Google Scholar 

  98. Rempel-Clower NL, Barbas H . Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 1998; 398: 393–419.

    Article  CAS  PubMed  Google Scholar 

  99. McDowall LM, Horiuchi J, Killinger S, Dampney RA . Modulation of the baroreceptor reflex by the dorsomedial hypothalamic nucleus and perifornical area. Am J Physiol Regul Integr Comp Physiol 2006; 290: R1020–R1026.

    Article  CAS  PubMed  Google Scholar 

  100. Bertoglio LJ, Zangrossi Jr H . Involvement of dorsolateral periaqueductal gray N-methyl-D-aspartic acid glutamate receptors in the regulation of risk assessment and inhibitory avoidance behaviors in the rat elevated T-maze. Behav Pharmacol 2006; 17: 589–596.

    Article  CAS  PubMed  Google Scholar 

  101. Chamberlin NL, Saper CB . Topographic organization of cardiovascular responses to electrical and glutamate microstimulation of the parabrachial nucleus in the rat. J Comp Neurol 1992; 326: 245–262.

    Article  CAS  PubMed  Google Scholar 

  102. Verberne AJ . Cuneiform nucleus stimulation produces activation of medullary sympathoexcitatory neurons in rats. Am J Physiol 1995; 268 (3 Part 2): R752–R758.

    CAS  PubMed  Google Scholar 

  103. Kubo T, Kanaya T, Numakura H, Okajima H, Hagiwara Y, Fukumori R . The lateral septal area is involved in mediation of immobilization stress-induced blood pressure increase in rats. Neurosci Lett 2002; 318: 25–28.

    Article  CAS  PubMed  Google Scholar 

  104. Drevets WC, Price JL, Simpson Jr JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    Article  CAS  PubMed  Google Scholar 

  105. Kennedy SH, Konarski JZ, Segal ZV, Lau MA, Bieling PJ, McIntyre RS et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry 2007; 164: 778–788.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Koenigs.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers-Schulz, B., Koenigs, M. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry 17, 132–141 (2012). https://doi.org/10.1038/mp.2011.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.88

Keywords

This article is cited by

Search

Quick links