Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis

Abstract

Although the U3 small nucleolar RNA (snoRNA), a member of the box C/D class of snoRNAs, was identified with the spliceosomal small nuclear RNAs (snRNAs) over 30 years ago1,2, its function and its associated protein components have remained more elusive. The U3 snoRNA is ubiquitous in eukaryotes and is required for nucleolar processing of pre-18S ribosomal RNA in all organisms where it has been tested3,4. Biochemical and genetic analyses suggest that U3–pre-rRNA base-pairing interactions mediate endonucleolytic pre-rRNA cleavages3. Here we have purified a large ribonucleoprotein (RNP) complex from Saccharomyces cerevisiae that contains the U3 snoRNA and 28 proteins. Seventeen new proteins (Utp1–17) and Rrp5 were present, as were ten known components. The Utp proteins are nucleolar and specifically associated with the U3 snoRNA. Depletion of the Utp proteins impedes production of the 18S rRNA, indicating that they are part of the active pre-rRNA processing complex. On the basis of its large size (80S; calculated relative molecular mass of at least 2,200,000) and function, this complex may correspond to the terminal knobs present at the 5′ ends of nascent pre-rRNAs. We have termed this large RNP the small subunit (SSU) processome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA composition of fractions from the purification of the U3 snoRNP.
Figure 2: Function of the new components of the SSU processome.
Figure 3: The SSU processome sediments at 80S on sucrose gradients.
Figure 4: The U3 snoRNA and Utp7 are required for terminal knob formation on nascent pre-rRNAs.

Similar content being viewed by others

References

  1. Weinberg, R. A. & Penman, S. Small molecular weight monodisperse nuclear RNA. J. Mol. Biol. 38, 289–304 (1968)

    Article  CAS  Google Scholar 

  2. Nakamura, T., Prestayko, A. W. & Busch, H. Studies on nucleolar 4 to 6S ribonucleic acid of Novikoff hepatoma cells. J. Biol. Chem. 243, 1368–1375 (1968)

    CAS  PubMed  Google Scholar 

  3. Venema, J. & Tollervey, D. Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33, 261–311 (1999)

    Article  CAS  Google Scholar 

  4. Maxwell, E. S. & Fournier, M. J. The small nucleolar RNAs. Ann. Rev. Biochem. 64, 897–934 (1995)

    Article  CAS  Google Scholar 

  5. Watkins, N. J. et al. A common core RNP structure shared between the small nucleolar box C/D RNPs and the spliceosomal U4 snRNP. Cell 103, 457–466 (2000)

    Article  CAS  Google Scholar 

  6. Lubben, B., Marshallsay, C., Rottman, N. & Luhrmann, R. Isolation of U3 snoRNP from CHO cells: a novel 55 kDa protein binds to the central part of U3 snoRNA. Nucleic Acids Res. 21, 5377–5385 (1993)

    Article  CAS  Google Scholar 

  7. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M. & Seraphin, B. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999)

    Article  CAS  Google Scholar 

  8. Wiederkehr, T., Pretot, R. F. & Minvielle-Sebastia, L. Synthetic lethal interactions with conditional poly(A) polymerase alleles identify LCP5, a gene involved in 18S rRNA maturation. RNA 4, 1357–1372 (1998)

    Article  CAS  Google Scholar 

  9. Billy, E., Wegierski, T., Nasr, F. & Filipowicz, W. Rcl1p, the yeast protein similar to the RNA 3′-phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis. EMBO J. 19, 2115–2126 (2000)

    Article  CAS  Google Scholar 

  10. Wegierski, T., Billy, E., Nasr, F. & Filipowicz, W. Bms1p, a G-domain-containing protein, associates with Rcl1p and is required for 18S rRNA biogenesis in yeast. RNA 7, 1254–1267 (2001)

    Article  CAS  Google Scholar 

  11. Chung, S., McLean, M. R. & Rymond, B. C. Yeast ortholog of the Drosophila crooked neck protein promotes spliceosome assembly through stable U4/U6.U5 snRNP addition. RNA 5, 1042–1054 (1999)

    Article  CAS  Google Scholar 

  12. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999)

    Article  CAS  Google Scholar 

  13. Kamakaka, R. & Rine, J. Sir- and silencer-independent disruption of silencing in Saccharomyces by Sas10p. Genetics 149, 903–914 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fournier, M. J. & Maxwell, E. S. The nucleolar snRNAs: catching up with the spliceosomal snRNAs. Trends Biochem. Sci. 18, 131–135 (1993)

    Article  CAS  Google Scholar 

  15. Venema, J. & Tollervey, D. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11, 1629–1650 (1995)

    Article  CAS  Google Scholar 

  16. Miller, O. L. Jr & Beatty, B. R. Visualization of nucleolar genes. Science 164, 955–957 (1969)

    Article  ADS  Google Scholar 

  17. Mougey, E. B. et al. The terminal balls characteristic of eucaryotic rRNA transcription units in chromatin spread are rRNA processing complexes. Genes Dev. 7, 1609–1619 (1993)

    Article  CAS  Google Scholar 

  18. Lee, S. J. & Baserga, S. J. Functional separation of pre-rRNA processing steps revealed by truncation of the U3 small nucleolar ribonucleoprotein component, Mpp10. Proc. Natl Acad. Sci. USA 94, 13536–13541 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Wehner, K. A. & Baserga, S. J. The σ70-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis. Mol. Cell 9, 329–339 (2002)

    Article  CAS  Google Scholar 

  20. Warner, J. R. Nascent ribosomes. Cell 107, 133–136 (2001)

    Article  CAS  Google Scholar 

  21. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999)

    Article  CAS  Google Scholar 

  22. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998)

    Article  CAS  Google Scholar 

  23. Schneider, B. L., Seufert, W., Steiner, B., Yang, Q. H. & Futcher, A. B. Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11, 1265–1274 (1995)

    Article  CAS  Google Scholar 

  24. Ross-MacDonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Dunbar, D. A., Dragon, F., Lee, S. J. & Baserga, S. J. A nucleolar protein related to ribosomal protein L7 is required for an early step in large ribosomal subunit biogenesis. Proc. Natl Acad. Sci. USA 97, 13027–13032 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Dunbar, D. A., Wormsley, S., Agentis, T. M. & Baserga, S. J. Mpp10p, a U3 small nucleolar ribonucleoprotein component required for pre-18S rRNA processing in yeast. Mol. Cell. Biol. 17, 5803–5812 (1997)

    Article  CAS  Google Scholar 

  27. Lee, S. J. & Baserga, S. J. Imp3p and Imp4p: two specific components of the U3 small nucleolar ribonucleoprotein that are essential for pre-18S rRNA processing. Mol. Cell. Biol. 19, 5441–5452 (1999)

    Article  CAS  Google Scholar 

  28. Hughes, J. M. X. & Ares, M. Jr Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and prevents formation of 18S ribosomal RNA. EMBO J. 10, 4231–4239 (1991)

    Article  CAS  Google Scholar 

  29. Samarsky, D. A. & Fournier, M. J. Functional mapping of the U3 small nucleolar RNA from the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 3431–3444 (1998)

    Article  CAS  Google Scholar 

  30. Osheim, Y. N. & Beyer, A. L. Electron microscopy of RNP complexes on nascent RNA using the Miller chromatin spreading method. Methods Enzymol. 180, 481–509 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Djikeng, G. Dreyfuss, P. Gordon, J. Laney, T. Serio and T. Stone for assistance and advice. We also thank P. Glazer, M. Snyder and J. Steitz for critical reading of the manuscript. F.D. was supported by the Anna Fuller Fund for Molecular Oncology. This work was supported by federal grants from the NIH to D.F.H and S.J.B. and the NSF to A.L.B., and by The Patterson Trust to S.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Baserga.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragon, F., Gallagher, J., Compagnone-Post, P. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002). https://doi.org/10.1038/nature00769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00769

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing