Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coordination of circadian timing in mammals

Abstract

Time in the biological sense is measured by cycles that range from milliseconds to years. Circadian rhythms, which measure time on a scale of 24 h, are generated by one of the most ubiquitous and well-studied timing systems. At the core of this timing mechanism is an intricate molecular mechanism that ticks away in many different tissues throughout the body. However, these independent rhythms are tamed by a master clock in the brain, which coordinates tissue-specific rhythms according to light input it receives from the outside world.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mammalian circadian timing system is a hierarchy of dispersed oscillators.
Figure 2: Mammalian circadian clockwork model.
Figure 3: CLOCK–BMAL1 heterodimers remain bound to E boxes over the circadian cycle.
Figure 4: New visual pathway from retina to the SCN.
Figure 5: Mechanisms from SCN to clock-controlled gene expression in liver.

Similar content being viewed by others

References

  1. Reppert, S. M. & Weaver, D. R. Molecular analysis of mammalian circadian rhythms. Ann. Rev. Physiol. 63, 647–676 (2001)

    CAS  Google Scholar 

  2. Bunney, W. E. & Bunney, B. G. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacolgy 22, 335–345 (2000)

    CAS  Google Scholar 

  3. Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phase circadian firing rhythms. Neuron 14, 697–706 (1995)

    CAS  PubMed  Google Scholar 

  4. Jagota, A., de la Iglesia, H. O. & Schwartz, W. J. Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nature Neurosci. 3, 372–376 (2000)

    CAS  PubMed  Google Scholar 

  5. Low-Zeddies, S. S. & Takahashi, J. S. Chimera analysis of the Clock mutation in mice shows that complex cellular integration determines circadian behaviour. Cell 105, 25–42 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hamada, T., LeSauter, J., Venuti, J. M. & Silver, R. Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J. Neurosci. 21, 7742–7750 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998)

    CAS  PubMed  Google Scholar 

  8. Zylka, M. J., Shearman, L. P., Weaver, D. R. & Reppert, S. M. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103–1110 (1998)

    CAS  PubMed  Google Scholar 

  9. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685 (2000)

    ADS  CAS  PubMed  Google Scholar 

  10. Pando, M. P., Morse, D., Cermakian N. & Sassone-Corsi, P. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 110, 107–117 (2002)

    CAS  PubMed  Google Scholar 

  11. Yagita, K., Tamanini, F., van Der Horst, G. T. & Okamura, H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292, 278–281 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702–715 (2001)

    CAS  PubMed  Google Scholar 

  13. Shimomura, K. et al. Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behaviour in mice. Genome Res. 11, 959–980 (2001)

    CAS  PubMed  Google Scholar 

  14. King, D. P. et al. Positional cloning of the mouse circadian Clock gene. Cell 89, 641–653 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998)

    ADS  CAS  PubMed  Google Scholar 

  16. Hogenesch, J. B., Gu, Y.-Z., Jain, S. & Bradfield, C. A. The basic helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl Acad. Sci. USA 95, 5474–5479 (1998)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999)

    CAS  PubMed  Google Scholar 

  19. Vitaterna, M. H. et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl Acad. Sci. USA 96, 12114–12119 (1999)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okamura, H. et al. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286, 2531–2534 (1999)

    CAS  PubMed  Google Scholar 

  21. Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000)

    ADS  CAS  PubMed  Google Scholar 

  22. Oishi, K., Fukui, H. & Ishida, N. Rhythmic expression of BMAL1 mRNA is altered in Clock mutant mice: differential regulation in the suprachiasmatic nucleus and peripheral tissues. Biochem. Biophys. Res. Commun. 268, 164–171 (2000)

    CAS  PubMed  Google Scholar 

  23. Preitner, N. et al. The orphan nuclear receptor REV-ERBa controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002)

    CAS  PubMed  Google Scholar 

  24. Ueda, H. R. et al. A transcription factor response element for gene expression during circadian night. Nature 418, 534–539 (2002)

    ADS  CAS  PubMed  Google Scholar 

  25. Yu, W., Nomura, M. & Ikea, M. Interacting feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem. Biophys. Res. Comm. 290, 933–942 (2002)

    CAS  PubMed  Google Scholar 

  26. Bae, K. et al. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30, 525–536 (2001)

    MathSciNet  CAS  PubMed  Google Scholar 

  27. Zheng, B. et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683–694 (2001)

    CAS  PubMed  Google Scholar 

  28. van der Horst, G. T. J. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999)

    ADS  CAS  PubMed  Google Scholar 

  29. Zheng, B. et al. The mPer2 gene encodes a function component of the mammalian clock. Nature 400, 169–173 (1999)

    ADS  CAS  PubMed  Google Scholar 

  30. Cermakian, N., Monaco, L., Pando, M. P., Dierich, A. & Sassone-Corsi, P. Altered behavioural rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. EMBO J. 20, 3967–3974 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shearman, L. P., Jin, X., Lee, C., Reppert, S. M. & Weaver, D. R. Targeted disruption of the mPer3 gene: Subtle effects on circadian clock function. Mol. Cell. Biol. 20, 6269–6275 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001)

    CAS  PubMed  Google Scholar 

  33. Eide, E. J., Vielhaber, E. L., Hinz, W. A. & Virshup, D. M. The circadian regulatory protein BMAL1 and cryptochromes are substrates of casein kinase 1ɛ (CKIɛ). J. Biol. Chem. 277, 17248–17254 (2002)

    CAS  PubMed  Google Scholar 

  34. Sanada, K., Okano, T. & Fukada, Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J. Biol. Chem. 277, 267–271 (2002)

    CAS  PubMed  Google Scholar 

  35. Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of a mammalian circadian mutation tau. Science 288, 483–491 (2000)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Toh, K. L. et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043 (2001)

    ADS  CAS  PubMed  Google Scholar 

  37. Akashi, M., Tsuchiya, Y., Yoshino, T. & Nishida, E. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIɛ) and CKIδ in cultured cells. Mol. Cell. Biol. 22, 1693–1703 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinek, S., Inonog, S., Manoukian, A. S. & Young, M. W. A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105, 769–779 (2001)

    CAS  PubMed  Google Scholar 

  39. Vielhaber, E. L., Duricka, D., Ullman, K. S. & Virshup, D. M. Nuclear export of mammalian PERIOD proteins. J. Biol. Chem. 276, 45921–45927 (2001)

    CAS  PubMed  Google Scholar 

  40. Yagita, K. et al. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 protein. EMBO J. 21, 1301–1314 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McNamara, P., Seo, S.-B., Rudic, R. D., Sehgal, A., Chakravarti, D. & FitzGerald, G. A. Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105, 877–889 (2001)

    CAS  PubMed  Google Scholar 

  42. Rutter, J., Reick, M., Wu, L. C. W. & McKnight, S. L Regulation of CLOCK and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514 (2001)

    CAS  PubMed  Google Scholar 

  43. Zhang, Q., Piston, D. W. & Goodman, R. H. Regulation of corepressor function by nuclear NADH. Science 295, 1895–1897 (2002)

    ADS  CAS  PubMed  Google Scholar 

  44. Wright, K. P. Jr & Czeisler, C. A. Absence of circadian phase resetting in response to bright light behind the knee. Science 297, 571 (2002)

    CAS  PubMed  Google Scholar 

  45. Lucas, R. J. et al. Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice. Behav. Brain Res. 125, 97–102 (2001)

    CAS  PubMed  Google Scholar 

  46. Provencio, I. et al. A novel human opsin in the inner retina. J. Neurosci. 20, 600–605 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Provencio, I., Rollag, M. D. & Castrucci, A. M. Photoreceptive net in the mammalian retina. Nature 415, 493 (2002)

    ADS  CAS  PubMed  Google Scholar 

  49. Gooley, J. J., Lu, J., Chou, T. C., Scammell, T. E. & Saper, C. B. Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neurosci. 4, 1165 (2001)

    CAS  PubMed  Google Scholar 

  50. Hannibal, J., Hindersson, P., Knudsen, S. M., Georg, B. & Fahrenkrug, J. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 22, RC191 (2002)

    PubMed  PubMed Central  Google Scholar 

  51. Berson, D. M., Dunn, F. A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002)

    ADS  CAS  PubMed  Google Scholar 

  52. Selby, C. P., Thompson, C., Schmitz, T. M., Van Gelder, R. N. & Sancar, A. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc. Natl Acad. Sci. USA 97, 14697–14702 (2000)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thompson, C. L. et al. Preservation of light signaling to the suprachiasmatic nucleus in vitamin A-deficient mice. Proc. Natl Acad. Sci. USA 98, 11708–11713 (2001)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Griffin, E. A., Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771 (1999)

    CAS  PubMed  Google Scholar 

  55. Shigeyoshi, Y. et al. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91, 1043–1053 (1997)

    CAS  PubMed  Google Scholar 

  56. Albrecht, U., Zheng, B., Larkin, D., Sun, Z. S. & Lee, C. C. mPer1 and mPer2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 16, 100–104 (2001)

    CAS  PubMed  Google Scholar 

  57. Field, M. D. et al. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 251, 437–447 (2000)

    Google Scholar 

  58. Crosio, C., Cermakian, N., Allis, C. D. & Sassone-Corsi, P. Light induced chromatin modification in cells of the mammalian circadian clock. Nature Neurosci. 3, 1241–1247 (2000)

    CAS  PubMed  Google Scholar 

  59. Travnickova-Bendova, Z., Cermakian, N., Reppert, S. M. & Sassone-Corsi, P. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK:BMAL1 activity. Proc. Natl Acad. Sci. USA 99, 7728–7733 (2002)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shearman, L. P. & Weaver, D. R. Photic induction of Period gene expression is reduced in Clock mutant mice. NeuroReport 10, 613–618 (1999)

    CAS  PubMed  Google Scholar 

  61. Gau, D. et al. Phosphorylation of CREB Ser-142 regulates light-induced phase shifts of the circadian clock. Neuron 34, 245–253 (2002)

    ADS  CAS  PubMed  Google Scholar 

  62. Pennartz, C. M. A., de Jeu, M. T. G., Bos, N. P. A., Schaap, J. & Geurtsen, A. M. S. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416, 286–290 (2002)

    CAS  PubMed  Google Scholar 

  63. Kramer, A. et al. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294, 2511–2515 (2001)

    ADS  CAS  PubMed  Google Scholar 

  64. Cheng, M. Y. et al. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405–410 (2002)

    ADS  CAS  PubMed  Google Scholar 

  65. Bartness, T. J., Song, C. K. & Demas, G. E. SCN efferents to peripheral tissues: implications for biological rhythms. J. Biol. Rhythms 16, 196–204 (2001)

    CAS  PubMed  Google Scholar 

  66. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000)

    ADS  CAS  PubMed  Google Scholar 

  67. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001)

    ADS  CAS  PubMed  Google Scholar 

  69. Le Minh, N., Damiloa, F., Tronche, F., Schutz, G. & Schibler, U. Glucocorticoids inhibit food-induced phase-shifting in peripheral circadian oscillators. EMBO J. 20, 7128–7136 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jin, X. et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96, 57–68 (1999)

    CAS  PubMed  Google Scholar 

  71. Ripperger, J. A. et al. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev. 14, 679–689 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lavery, D. J. et al. Circadian expression of the steroid 15 α-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol. Cell. Biol. 19, 6488–6499 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995–1006 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Clayton, J. D., Kyriacou, C. P. & Reppert, S. M. Keeping time with the human genome. Nature 409, 829–831 (2000)

    ADS  Google Scholar 

  75. Grundschober, C. et al. Circadian regulation of diverse gene products revealed by mRNA expression profiling of synchronized fibroblasts. J. Biol. Chem. 276, 46751–46758 (2001)

    CAS  PubMed  Google Scholar 

  76. Duffield, G. E. et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12, 551–557 (2002)

    CAS  PubMed  Google Scholar 

  77. Kita, Y. et al. Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 12, 55–65 (2002)

    CAS  PubMed  Google Scholar 

  78. Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550 (2001)

    Google Scholar 

  79. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002)

    CAS  PubMed  Google Scholar 

  80. Storch, K. F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002)

    ADS  CAS  PubMed  Google Scholar 

  81. Harmar, A. J. et al. The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109, 497–508 (2002)

    CAS  PubMed  Google Scholar 

  82. Reick, M., Garcia, J. A., Dudley, C. & McKnight, S. L. NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506–509 (2001)

    CAS  PubMed  Google Scholar 

  83. Liu, C. & Reppert, S. M. GABA synchronizes clock cells within the suprachiasmatic circadian clock. Neuron 25, 123–128 (2000)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Reppert laboratory for contributing to the ideas presented in this review, and U. Schibler for sharing data before publication. This work was supported by grants from the NIH and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Reppert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reppert, S., Weaver, D. Coordination of circadian timing in mammals. Nature 418, 935–941 (2002). https://doi.org/10.1038/nature00965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00965

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing