Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions

Abstract

The ability of cells to form cell contacts, adhere to the extracellular matrix, change morphology, and migrate is essential for development, wound healing, metastasis, cell survival and the immune response. These events depend on the binding of integrin to the extracellular matrix, and assembly of focal adhesions, which are complexes comprising scaffolding and signalling proteins organized by adhesion to the extracellular matrix1,2,3. Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) regulates interactions between these proteins, including the interaction of vinculin with actin and talin4,5,6,7,8,9. The binding of talin to β-integrin is strengthened by PtdIns(4,5)P2, suggesting that the basis of focal adhesion assembly is regulated by this lipid mediator9,10. Here we show that the type I phosphatidylinositol phosphate kinase isoform-γ 661 (PIPKIγ661), an enzyme that makes PtdIns(4,5)P2, is targeted to focal adhesions by an association with talin. PIPKIγ661 is tyrosine phosphorylated by focal adhesion associated kinase signalling, increasing both the activity of phosphatidylinositol phosphate kinase and its association with talin. This defines a mechanism for spatial generation of PtdIns(4,5)P2 at focal adhesions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIPKIγ661 is targeted to focal adhesions by an association with talin.
Figure 2: PIPKIγ661 modulates assembly of talin into focal adhesions.
Figure 3: PIPKIγ661 facilitates talin targeting to membranes and assembly into focal adhesions.
Figure 4: Functional linkage between PIPKIγ661 and FAK signalling.

Similar content being viewed by others

References

  1. Critchley, D. R. Focal adhesions—the cytoskeleton connection. Curr. Opin. Cell Biol. 12, 133–139 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz, M. A. & Ginsberg, M. H. Networks and crosstalk: integrin signalling spreads. Nature Cell Biol. 4, E65–E68 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. McNamee, H. P., Ingber, D. E. & Schwartz, M. A. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J. Cell Biol. 121, 673–678 (1993)

    Article  CAS  PubMed  Google Scholar 

  5. Berditchevski, F., Tolias, K. F., Wong, K., Carpenter, C. L. & Hemler, M. E. A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J. Biol. Chem. 272, 2595–2598 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M. & Schwartz, M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79, 507–513 (1994)

    Article  CAS  PubMed  Google Scholar 

  7. Gilmore, A. P. & Burridge, K. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4,5-bisphosphate. Nature 381, 531–535 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Steimle, P. A., Hoffert, J. D., Adey, N. B. & Craig, S. W. Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J. Biol. Chem. 274, 18414–18420 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. Martel, V. et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276, 21217–21227 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Janmey, P. A. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu. Rev. Physiol. 56, 169–191 (1994)

    Article  CAS  PubMed  Google Scholar 

  11. Anderson, R. A., Boronenkov, I. V., Doughman, S. D., Kunz, J. & Loijens, J. C. Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem. 274, 9907–9910 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Kunz, J. et al. The activation loop of phosphatidylinositol phosphate kinases determines signaling specificity. Mol. Cell 5, 1–11 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Ishihara, H. et al. Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J. Biol. Chem. 273, 8741–8748 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. Rao, V. D., Misra, S., Boronenkov, I. V., Anderson, R. A. & Hurley, J. H. Structure of type IIβ phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94, 829–839 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Pasquale, E. B., Maher, P. A. & Singer, S. J. Talin is phosphorylated on tyrosine in chicken embryo fibroblasts transformed by Rous sarcoma virus. Proc. Natl Acad. Sci. USA 83, 5507–5511 (1986)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. DeClue, J. E. & Martin, G. S. Phosphorylation of talin at tyrosine in Rous sarcoma virus-transformed cells. Mol. Cell Biol. 7, 371–378 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Calderwood, D. A. et al. The Talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Rees, D. J., Ades, S. E., Singer, S. J. & Hynes, R. O. Sequence and domain structure of talin. Nature 347, 685–689 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Chisti, A. H. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci. 23, 281–282 (1998)

    Article  Google Scholar 

  20. Calderwood, D. A. et al. The phosphotyrosine binding (PTB)-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Cary, L. A. & Guan, J. L. Focal adhesion kinase in integrin-mediated signaling. Front. Biosci. 4, D102–D113 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Rodriquez-Fernandez, J. L. & Rozengurt, E. Bombesin, vasopressin, lysophosphatidic acid, and sphingosylphosphorylcholine induce focal adhesion kinase activation in intact Swiss 3T3 cells. J. Biol. Chem. 273, 19321–19328 (1998)

    Article  Google Scholar 

  23. Chan, P. Y., Kanner, S. B., Whitney, G. & Aruffo, A. A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. J. Biol. Chem. 269, 20567–20574 (1994)

    CAS  PubMed  Google Scholar 

  24. Anderson, R. A. & Marchesi, V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature 318, 295–298 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Hirao, M. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J. Cell Biol. 135, 37–51 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. Honda, A. et al. Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99, 521–532 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Jenkins, G. H., Fisette, P. L. & Anderson, R. A. Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J. Biol. Chem. 269, 11547–11554 (1994)

    CAS  PubMed  Google Scholar 

  28. Kam, Y. & Exton, J. H. Phospholipase D activity is required for actin stress fiber formation in fibroblasts. Mol. Cell Biol. 21, 4055–4066 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Loijens, J. C. & Anderson, R. A. Type I phosphatidylinositol-4-phosphate 5-kinase are distinct members of this novel lipid kinase family. J. Biol. Chem. 271, 32937–32943 (1996)

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X. L. et al. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J. Biol. Chem. 272, 17756–17761 (1997)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HA-tagged PIPKIγ mammalian expression vectors were a gift of T. F. J. Martin. We thank D. Mosher, A. Huttenlocher and P. Keely for discussions and reagents. This research was supported by the National Institutes of Health R.A.A., and by the American Heart Association for K.L., R.L.D. and M.W.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Anderson.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, K., Doughman, R., Firestone, A. et al. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002). https://doi.org/10.1038/nature01082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01082

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing