Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans

Abstract

Necrotic cell death underlies the pathology of numerous human neurodegenerative conditions1. In the nematode Caenorhabditis elegans, gain-of-function mutations in specific ion channel genes such as the degenerin genes deg-1 and mec-4, the acetylcholine receptor channel subunit gene deg-3 and the Gs protein α-subunit gene gsa-1 evoke an analogous pattern of degenerative (necrotic-like) cell death in neurons that express the mutant proteins2,3,4,5,6. An increase in concentrations of cytoplasmic calcium in dying cells, elicited either by extracellular calcium influx or by release of endoplasmic reticulum stores, is thought to comprise a major death-signalling event7,8. But the biochemical mechanisms by which calcium triggers cellular demise remain largely unknown. Here we report that neuronal degeneration inflicted by various genetic lesions in C. elegans requires the activity of the calcium-regulated CLP-1 and TRA-3 calpain proteases and aspartyl proteases ASP-3 and ASP-4. Our findings show that two distinct classes of proteases are involved in necrotic cell death and suggest that perturbation of intracellular concentrations of calcium may initiate neuronal degeneration by deregulating proteolysis. Similar proteases may mediate necrotic cell death in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aspartyl protease deficiency suppresses neurodegeneration in C. elegans.
Figure 2: Specific aspartyl proteases are required for neurodegeneration in C. elegans.
Figure 3: Specific calpain proteases are required for neurodegeneration in C. elegans.
Figure 4: Calpains act sequentially with aspartyl proteases to facilitate cell death.

Similar content being viewed by others

References

  1. Syntichaki, P. & Tavernarakis, N. Death by necrosis: uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep. 3, 604–609 (2002)

    Article  CAS  Google Scholar 

  2. Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in Caenorhabditis elegans. Nature 345, 410–416 (1990)

    Article  ADS  CAS  Google Scholar 

  3. Driscoll, M. & Chalfie, M. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588–593 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Treinin, M. & Chalfie, M. A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans. Neuron 14, 871–877 (1995)

    Article  CAS  Google Scholar 

  5. Korswagen, H. C., Park, J. H., Ohshima, Y. & Plasterk, R. H. An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev. 11, 1493–1503 (1997)

    Article  CAS  Google Scholar 

  6. Berger, A. J., Hart, A. C. & Kaplan, J. M. Gαs-induced neurodegeneration in Caenorhabditis elegans. J. Neurosci. 18, 2871–2880 (1998)

    Article  CAS  Google Scholar 

  7. Sattler, R. & Tymianski, M. Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med. 78, 3–13 (2000)

    Article  CAS  Google Scholar 

  8. Xu, K., Tavernarakis, N. & Driscoll, M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron 31, 957–971 (2001)

    Article  CAS  Google Scholar 

  9. Hall, D. H. et al. Neuropathology of degenerative cell death in Caenorhabditis elegans. J. Neurosci. 17, 1033–1045 (1997)

    Article  CAS  Google Scholar 

  10. Lee, J. M., Zipfel, G. J. & Choi, D. W. The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7–A14 (1999)

    Article  CAS  Google Scholar 

  11. Chung, S., Gumienny, T. L., Hengartner, M. O. & Driscoll, M. A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature Cell Biol. 2, 931–937 (2000)

    Article  CAS  Google Scholar 

  12. Jacobson, L. A. et al. Identification of a putative structural gene for cathepsin D in Caenorhabditis elegans. Genetics 119, 355–363 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rogalski, T. M., Mullen, G. P., Bush, J. A., Gilchrist, E. J. & Moerman, D. G. UNC-52/perlecan isoform diversity and function in Caenorhabditis elegans. Biochem. Soc. Trans. 29, 171–176 (2001)

    Article  CAS  Google Scholar 

  14. Estevez, M. et al. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature 365, 644–649 (1993)

    Article  ADS  CAS  Google Scholar 

  15. Hawdon, J. M., Emmons, S. W. & Jacobson, L. A. Regulation of proteinase levels in the nematode Caenorhabditis elegans. Preferential depression by acute or chronic starvation. Biochem. J. 264, 161–165 (1989)

    Article  CAS  Google Scholar 

  16. Tcherepanova, I., Bhattacharyya, L., Rubin, C. S. & Freedman, J. H. Aspartic proteases from the nematode Caenorhabditis elegans. Structural organization and developmental and cell-specific expression of asp-1. J. Biol. Chem. 275, 26359–26369 (2000)

    Article  CAS  Google Scholar 

  17. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet. 24, 180–183 (2000)

    Article  CAS  Google Scholar 

  18. Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A. & Yuan, J. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653–660 (1993)

    Article  CAS  Google Scholar 

  19. Tavernarakis, N., Shreffler, W., Wang, S. & Driscoll, M. unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18, 107–119 (1997)

    Article  CAS  Google Scholar 

  20. Sorimachi, H. & Suzuki, K. The structure of calpain. J. Biochem. (Tokyo) 129, 653–664 (2001)

    Article  CAS  Google Scholar 

  21. Yamashima, T. Implication of cysteine proteases calpain, cathepsin and caspase in ischemic neuronal death of primates. Prog. Neurobiol. 62, 273–295 (2000)

    Article  CAS  Google Scholar 

  22. Barnes, T. M. & Hodgkin, J. The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family. EMBO J. 15, 4477–4484 (1996)

    Article  CAS  Google Scholar 

  23. Sokol, S. B. & Kuwabara, P. E. Proteolysis in Caenorhabditis elegans sex determination: cleavage of TRA-2A by TRA-3. Genes Dev. 14, 901–906 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Adamec, E., Mohan, P. S., Cataldo, A. M., Vonsattel, J. P. & Nixon, R. A. Up-regulation of the lysosomal system in experimental models of neuronal injury: implications for Alzheimer's disease. Neuroscience 100, 663–675 (2000)

    Article  CAS  Google Scholar 

  25. Ferri, K. F. & Kroemer, G. Organelle-specific initiation of cell death pathways. Nature Cell Biol. 3, E255–E263 (2001)

    Article  CAS  Google Scholar 

  26. Stracher, A. Calpain inhibitors as therapeutic agents in nerve and muscle degeneration. Ann. NY Acad. Sci. 884, 52–59 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Huang, Y. & Wang, K. K. The calpain family and human disease. Trends Mol. Med. 7, 355–362 (2001)

    Article  CAS  Google Scholar 

  28. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, research0002.1–0002.10 (2001)

    Google Scholar 

Download references

Acknowledgements

We thank P. Kuwabara and S. Sokol for communicating results before publication; C. Samara for technical help; and colleagues for discussions and comments on the manuscript. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources. Certain strains were from the NemaPharm Group of Axys Pharmaceuticals. We thank A. Fire for plasmid vectors and L. Jacobson for cad-1 mutant strains. This work was funded in part by grants from NIH NINDS to M.D. and by grants from HFSPO and IMBB to N.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios Tavernarakis.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syntichaki, P., Xu, K., Driscoll, M. et al. Specific aspartyl and calpain proteases are required for neurodegeneration in C. elegans. Nature 419, 939–944 (2002). https://doi.org/10.1038/nature01108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01108

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing