Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Nature
  • Published:

Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry

Abstract

The annotated genomes of organisms define a ‘blueprint’ of their possible gene products. Post-genome analyses attempt to confirm and modify the annotation and impose a sense of the spatial, temporal and developmental usage of genetic information by the organism. Here we describe a large-scale, high-accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis1,2,3 of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last two groups provide insights into the biology of the sexual stages of the parasite, and include conserved, stage-specific, secreted and membrane-associated proteins. A subset of these proteins contain domains that indicate a role in cell–cell interactions, and therefore can be evaluated as potential components of a malaria vaccine formulation. We also report a set of peptides with significant matches in the parasite genome but not in the protein set predicted by computational methods.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential extraction of parasite-infected red blood cells (RBCs) and flow chart of MS analysis.
Figure 2: Schematic representation of proteomic data.
Figure 3: LCCL/lectin domain proteins expressed in sexual stages of P. falciparum.
Figure 4: Refinement of gene structure and re-annotation using proteomic data.

References

  1. Pandey, A. & Mann, M. Proteomics to study genes and genomes. Nature 405, 837–846 (2000)

    Article  CAS  Google Scholar 

  2. Link, A. J. et al. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol. 17, 676–682 (1999)

    Article  CAS  Google Scholar 

  3. Griffin, T. J. & Aebersold, R. Advances in proteome analysis by mass spectrometry. J. Biol. Chem. 276, 45497–45500 (2001)

    Article  CAS  Google Scholar 

  4. Bruce, M. C., Alano, P., Duthie, S. & Carter, R. Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology 100, 191–200 (1990)

    Article  Google Scholar 

  5. Richie, T. L. & Saul, A. Progress and challenges for malaria vaccines. Nature 415, 694–701 (2002)

    Article  CAS  Google Scholar 

  6. Kocken, C. H. et al. Cloning and expression of the gene coding for the transmission blocking target antigen Pfs48/45 of Plasmodium falciparum. Mol. Biochem. Parasitol. 61, 59–68 (1993)

    Article  CAS  Google Scholar 

  7. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999)

    Article  CAS  Google Scholar 

  8. Gardner, M. J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002)

    Article  CAS  Google Scholar 

  9. van Dijk, M. R. et al. A central role for P48/45 in malaria parasite male gamete fertility. Cell 104, 153–164 (2001)

    Article  CAS  Google Scholar 

  10. Alano, P. et al. COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Mol. Biochem. Parasitol. 74, 143–156 (1995)

    Article  CAS  Google Scholar 

  11. Wickham, M. E. et al. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J. 20, 5636–5649 (2001)

    Article  CAS  Google Scholar 

  12. Cowman, A. F. et al. Functional analysis of proteins involved in Plasmodium falciparum merozoite invasion of red blood cells. FEBS Lett. 476, 84–88 (2000)

    Article  CAS  Google Scholar 

  13. Rahlfs, S., Fischer, M. & Becker, K. Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J. Biol. Chem. 276, 37133–37140 (2001)

    Article  CAS  Google Scholar 

  14. Fowler, R. E. et al. Microtubule associated motor proteins of Plasmodium falciparum merozoites. Mol. Biochem. Parasitol. 117, 187–200 (2001)

    Article  CAS  Google Scholar 

  15. Templeton, T. J., Keister, D. B., Muratova, O., Procter, J. L. & Kaslow, D. C. Adherence of erythrocytes during exflagellation of Plasmodium falciparum microgametes is dependent on erythrocyte surface sialic acid and glycophorins. J. Exp. Med. 187, 1599–1609 (1998)

    Article  CAS  Google Scholar 

  16. Delrieu, I. et al. PSLAP, a protein with multiple adhesive motifs, is expressed in Plasmodium falciparum gametocytes. Mol. Biochem. Parasitol. 121, 11–20 (2002)

    Article  CAS  Google Scholar 

  17. Kuster, B., Mortensen, P., Andersen, J. S. & Mann, M. Mass spectrometry allows direct identification of proteins in large genomes. Proteomics 1, 641–650 (2001)

    Article  CAS  Google Scholar 

  18. Rutherford, K. et al. Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945 (2000)

    Article  CAS  Google Scholar 

  19. Brooks, S. R. & Williamson, K. C. Proteolysis of Plasmodium falciparum surface antigen, Pfs230, during gametogenesis. Mol. Biochem. Parasitol. 106, 77–82 (2000)

    Article  CAS  Google Scholar 

  20. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996)

    Article  CAS  Google Scholar 

  21. Rappsilber, J., Ryder, U., Lamond, A. I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002)

    Article  CAS  Google Scholar 

  22. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl Acad. Sci. USA 95, 5857–5864 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for help and discussions. This work was supported by the Danish National Research Foundation, the Dutch Science Foundation (NWO), the European Union and the World Health Organization (WHO) Special Program for Research and Training in Tropical Diseases.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hendrik G. Stunnenberg or Matthias Mann.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Additional information

Sequence data for the genes newly annotated according to the present study can be found at http://www.sanger.ac.uk/Projects/P_falciparum.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasonder, E., Ishihama, Y., Andersen, J. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002). https://doi.org/10.1038/nature01111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01111

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing