Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage

Abstract

Activation of the tumour suppressor p53 by DNA damage induces either cell cycle arrest or apoptotic cell death1. The cytostatic effect of p53 is mediated by transcriptional activation of the cyclin-dependent kinase (CDK) inhibitor p21Cip1, whereas the apoptotic effect is mediated by transcriptional activation of mediators including PUMA and PIG3 (ref. 2). What determines the choice between cytostasis and apoptosis is not clear3. Here we show that the transcription factor Myc is a principal determinant of this choice. Myc is directly recruited to the p21Cip1 promoter by the DNA-binding protein Miz-1. This interaction blocks p21Cip1 induction by p53 and other activators. As a result Myc switches, from cytostatic to apoptotic, the p53-dependent response of colon cancer cells to DNA damage. Myc does not modify the ability of p53 to bind to the p21Cip1 or PUMA promoters, but selectively inhibits bound p53 from activating p21Cip1 transcription. By inhibiting p21Cip1 expression Myc favours the initiation of apoptosis, thereby influencing the outcome of a p53 response in favour of cell death.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overexpression of Myc inhibits p21 induction by TGF-β, TPA and p53.
Figure 2: Myc represses p21 induction by binding to the p21 proximal promoter region by means of Miz-1.
Figure 3: Myc overexpression or p21 loss favours apoptosis instead of cell cycle arrest on treatment with daunorubicin or γ-radiation in HCT116 cells.
Figure 4: Effect of p21 overexpression on the induction of apoptosis by DNA damage in Myc-overexpressing HCT116 cells and LoVo cells.
Figure 5: Effect of Myc overexpression on the induction of pro-apoptotic genes by DNA damage and on p53 DNA-binding affinity.

Similar content being viewed by others

References

  1. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002)

    Article  CAS  Google Scholar 

  3. Lane, D. How cells choose to die. Nature 414, 25–27 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Alexandrow, M. G., Kawabata, M., Aakre, M. & Moses, H. L. Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta 1. Proc. Natl Acad. Sci. USA 92, 3239–3243 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mitchell, K. O. & El-Deiry, W. S. Overexpression of c-Myc inhibits p21WAF1/CIP1 expression and induces S-phase entry in 12-O-tetradecanoylphorbol-13-acetate (TPA)-sensitive human cancer cells. Cell Growth Differ. 10, 223–230 (1999)

    CAS  PubMed  Google Scholar 

  7. Claassen, G. F. & Hann, S. R. A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor-β-induced cell-cycle arrest. Proc. Natl Acad. Sci. USA 97, 9498–9503 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Warner, B. J., Blain, S. W., Seoane, J. & Massague, J. Myc downregulation by transforming growth factor β required for activation of the p15Ink4B G1 arrest pathway. Mol. Cell. Biol. 19, 5913–5922 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Datto, M. B., Yu, Y. & Wang, X.-F. Functional analysis of the transforming growth factor β responsive elements in WAF1/Cip1/p21 promoter. J. Biol. Chem. 270, 28623–28628 (1995)

    Article  CAS  PubMed  Google Scholar 

  10. El-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumour suppression. Cell 75, 817–825 (1993)

    Article  CAS  PubMed  Google Scholar 

  11. Zeng, Y. X. & el-Deiry, W. S. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12, 1557–1564 (1996)

    CAS  PubMed  Google Scholar 

  12. Massague, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Zeng, Y. X., Somasundaram, K. & el-Deiry, W. S. AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nature Genet. 15, 78–82 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. Biggs, J. R., Kudlow, J. E. & Kraft, A. S. The role of the transcription factor Sp1 in regulating the expression of the WAF1/CIP1 gene in U937 leukemic cells. J. Biol. Chem. 271, 901–906 (1996)

    Article  CAS  PubMed  Google Scholar 

  15. Waldman, T., Kinzler, K. W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187–5190 (1995)

    CAS  PubMed  Google Scholar 

  16. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Gewirtz, D. A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727–741 (1999)

    Article  CAS  PubMed  Google Scholar 

  18. Resnick-Silverman, L., St Clair, S., Maurer, M., Zhao, K. & Manfredi, J. J. Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumour suppressor protein p53. Genes Dev. 12, 2102–2107 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1, 611–617 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biol. 3, 400–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Ziegelbauer, J. et al. Transcription factor MIZ-1 is regulated via microtubule association. Mol. Cell 8, 339–349 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Zindy, F. et al. Myc signaling via the ARF tumour suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burri, N. et al. Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab. Invest. 81, 217–229 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. Polyak, K., Waldman, T., He, T. C., Kinzler, K. W. & Vogelstein, B. Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev. 10, 1945–1952 (1996)

    Article  CAS  PubMed  Google Scholar 

  26. Reynisdottir, I., Polyak, K., Iavarone, A. & Massague, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev. 9, 1831–1845 (1995)

    Article  CAS  PubMed  Google Scholar 

  27. Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, J. M., Nichols, M. A., Chandrasekharan, S., Xiong, Y. & Wang, X. F. Transforming growth factor beta activates the promoter of cyclin-dependent kinase inhibitor p15INK4B through an Sp1 consensus site. J. Biol. Chem. 270, 26750–26753 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Hata, A. et al. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100, 229–240 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. El-Deiry and S. Lowe for providing the recombinant adenovirus; B. Vogelstein and K. Kinzler for the HCT116 cell lines and the PUMA antibody; M. Eilers for Miz constructs; R. Tjian for the Miz-1 antibody and the bacterial expression vector encoding Miz-1; and S. Blain for advice. We also thank D. Domingo and the Memorial Sloan-Kettering flow cytometry core facility for their help in the FACS analysis. J.M. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Massagué.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seoane, J., Le, HV. & Massagué, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002). https://doi.org/10.1038/nature01119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing