Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequence and analysis of rice chromosome 4

Abstract

Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research1. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely2. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maps of rice chromosome 4.
Figure 2: Distribution of various repeats and features along chromosome 4.
Figure 3: Comparative sequence analyses between rice subspecies indica GLA4 and japonica Nipponbare.

Similar content being viewed by others

References

  1. Sasaki, T. & Burr, B. International rice genome sequencing project: the effort to completely sequence the rice genome. Curr. Opin. Plant Biol. 3, 138–141 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. Sasaki, T. et al. The genome sequence and structure of rice chromosome 1. Nature this issue

  3. Harushima, Y. et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148, 479–494 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, J. et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14, 525–535 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, M. et al. An integrated physical and genetic map of the rice genome. Plant Cell 14, 537–545 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gale, M. D. & Devos, K. M. Comparative genetics in the grasses. Proc. Natl Acad. Sci. USA 95, 1971–1974 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meinke, D. W., Cherry, J. M., Dean, C. D., Rounsley, S. & Koornneef, M. Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662–682 (1998)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  9. Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761–768 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Mayer, K. et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402, 769–777 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Messing, J. & Llaca, V. Importance of anchor genomes for any plant genome project. Proc. Natl Acad. Sci. USA 95, 2017–2020 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao, Q. et al. A fine physical map of the rice chromosome 4. Genome Res. 12, 817–823 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saji, S. et al. A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome 44, 32–37 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Copenhaver, G. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Jenny, A. & Keller, W. Cloning of cDNAs encoding the 160 kDa subunit of the bovine cleavage and polyadenylation specificity factor. Nucleic Acids Res. 23, 2629–2635 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshimura, S. et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl Acad. Sci. USA 95, 1663–1668 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong, F. et al. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc. Natl Acad. Sci. USA 95, 8135–8140 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oka, H. I. in Rice Biotechnology (eds Khush, G. S. & Toenniessen, G. H.) 55–80 (CAB International, Oxon, 1991)

    Google Scholar 

  19. Khush, G. S. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35, 25–34 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Huang, X., Adams, M. D., Zhou, H. & Kerlavage, A. R. A tool for analyzing and annotating genomic sequences. Genomics 46, 37–45 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. Paterson, A. H. et al. Toward a unified genetic map of higher plants, transcending the monocot–dicot divergence. Nature Genetics 14, 380–382 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. Maugenest, S., Martinez, I., Godin, B., Perez, P. & Lescure, A. M. Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol. Biol. 39, 503–514 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Knutzon, D. S. et al. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates. Plant Physiol. 109, 999–1006 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ewing, B. & Green, P. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res. 8, 186–194 (1998)

    Article  CAS  PubMed  Google Scholar 

  27. Gordon, D., Abajian, C. & Green, P. Consed. A graphical tool for sequence finishing. Genome Res. 8, 195–202 (1998)

    Article  CAS  PubMed  Google Scholar 

  28. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Sasaki and the RGP for rice genetic and EST markers and a PAC genomic library of rice Nipponbare; R. Wing and the CUGI for providing BAC libraries of the Nipponbare variety; Monsanto for the rice working-draft sequence data; G. Barry and J. Liu for help; R. Buell and Q. Yuan for help with the annotation and analysis of chromosome 4 sequences; X. Huang and Z. Ning for help with using the AAT and the ssaha programs, respectively; members of the National Centre for Gene Research for assistance; Z. Xu, Z. Chen, G. Wang, Q. Ma and Q. Zhang for support; and X. Lin, X. Deng, Y. Li, L. Zhou, N. Zheng, X. Liu and members of the IRGSP for discussion. This work was supported by grants from the Ministry of Science and Technology of the People's Republic of China, Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Han.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Q., Zhang, Y., Hao, P. et al. Sequence and analysis of rice chromosome 4. Nature 420, 316–320 (2002). https://doi.org/10.1038/nature01183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01183

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing