Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The plant MITE mPing is mobilized in anther culture

Abstract

Transposable elements constitute a large portion of eukaryotic genomes and contribute to their evolution and diversification. Miniature inverted-repeat transposable elements (MITEs) constitute one of the main groups of transposable elements and are distributed ubiquitously in the genomes of plants and animals1 such as maize2,3,4,5, rice3, Arabidopsis6,7, human8, insect9,10 and nematode11. Because active MITEs have not been identified, the transposition mechanism of MITEs and their accumulation in eukaryotic genomes remain poorly understood. Here we describe a new class of MITE, called miniature Ping (mPing), in the genome of Oryza sativa (rice). mPing elements are activated in cells derived from anther culture, where they are excised efficiently from original sites and reinserted into new loci. An mPing-associated Ping element, which has a putative PIF family5 transposase, is implicated in the recent proliferation of this MITE family in a subspecies of rice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and polymorphisms of mPing and mPing-related Ping.
Figure 2: Excision of mPing and Ping.
Figure 3: Transposition of mPing and Ping.

Similar content being viewed by others

References

  1. Feschotte, C., Jiang, N. & Wessler, S. R. Plant transposable elements: where genetics meets genomics. Nature Rev. Genet. 3, 329–341 (2002)

    Article  CAS  Google Scholar 

  2. Bureau, T. E. & Wessler, S. R. Tourist: A large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4, 1283–1294 (1992)

    Article  CAS  Google Scholar 

  3. Bureau, T. E. & Wessler, S. R. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc. Natl Acad. Sci. USA 91, 1411–1415 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Zhang, Q., Arbuckle, J. & Wessler, S. R. Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc. Natl Acad. Sci. USA 97, 1160–1165 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Zhang, X. et al. P instability factor: an active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases. Proc. Natl Acad. Sci. USA 98, 12572–12577 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Surzycki, S. A. & Belknap, W. R. Characterization of repetitive DNA elements in Arabidopsis. J. Mol. Evol. 48, 684–691 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Casacuberta, E., Casacuberta, J. M., Puigdomenech, P. & Monfort, A. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: Characterization of the Emigrant family of elements. Plant J. 16, 79–85 (1998)

    Article  CAS  Google Scholar 

  8. Smit, A. F. A. & Riggs, A. D. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl Acad. Sci. USA 93, 1443–1448 (1996)

    Article  ADS  CAS  Google Scholar 

  9. Tu, Z. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito Aedes aegypti. Mol. Biol. Evol. 17, 1313–1325 (2000)

    Article  CAS  Google Scholar 

  10. Feschotte, C. & Mouches, C. Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: Characterization of the Mimo family. Gene 250, 109–116 (2000)

    Article  CAS  Google Scholar 

  11. Surzycki, S. A. & Belknap, W. R. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc. Natl Acad. Sci. USA 97, 245–249 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Raina, S. K. Doubled haploid breeding in cereals. Plant Breed. Rev. 15, 141–186 (1997)

    CAS  Google Scholar 

  13. Morishima, H., Sano, Y. & Oka, H.-I. Evolutionary studies in cultivated rice and its wild relatives. Oxf. Surv. Evol. Biol. 8, 135–184 (1992)

    Google Scholar 

  14. Yu, J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. & Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl Acad. Sci. USA 93, 7783–7788 (1996)

    Article  ADS  CAS  Google Scholar 

  16. Wessler, S., Tarpley, A., Purugganan, M., Spell, M. & Okagaki, R. Filler DNA is associated with spontaneous deletions in maize. Proc. Natl Acad. Sci. USA 87, 8731–8735 (1990)

    Article  ADS  CAS  Google Scholar 

  17. Hirano, H.-Y., Eiguchi, M. & Sano, Y. A single base change altered the regulation of the Waxy gene at the post-transcriptional level during domestication of rice. Mol. Biol. Evol. 15, 978–987 (1998)

    Article  CAS  Google Scholar 

  18. Kikuchi, K. et al. Molecular analysis of the NAC gene family in rice. Mol. Gen. Genet. 262, 1047–1051 (2000)

    Article  CAS  Google Scholar 

  19. Yano, M. et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2483 (2000)

    Article  CAS  Google Scholar 

  20. Nakazaki, T. et al. Mobilization of a transposon in the rice genome. Nature this issue

  21. Feschotte, C. & Mouches, C. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol. Biol. Evol. 17, 730–737 (2000)

    Article  CAS  Google Scholar 

  22. Barry, G. F. The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 125, 1164–1165 (2001)

    Article  CAS  Google Scholar 

  23. Hiei, Y., Ohta, S., Komari, T. & Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271–282 (1994)

    Article  CAS  Google Scholar 

  24. Negishi, T., Fujimura, T. & Sakurai, M. The efficient method of production of rice haploid-plants. Japanese Patent 06–036698 B (1994).

Download references

Acknowledgements

We thank T. Tanisaka for providing information on Sairyu before publication; T. Fujimura for technical advice on anther culture; S. Iida for critically reading the manuscript; and the Monsanto Rice–Research.Org Program for making available a draft of japonica genomic sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiro-Yuki Hirano.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, K., Terauchi, K., Wada, M. et al. The plant MITE mPing is mobilized in anther culture. Nature 421, 167–170 (2003). https://doi.org/10.1038/nature01218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01218

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing