Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

Computational systems biology

Abstract

To understand complex biological systems requires the integration of experimental and computational research — in other words a systems biology approach. Computational biology, through pragmatic modelling and theoretical exploration, provides a powerful foundation from which to address critical scientific questions head-on. The reviews in this Insight cover many different aspects of this energetic field, although all, in one way or another, illuminate the functioning of modular circuits, including their robustness, design and manipulation. Computational systems biology addresses questions fundamental to our understanding of life, yet progress here will lead to practical innovations in medicine, drug discovery and engineering.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage of a basic systems-biology research cycle with drug discovery and treatment cycles.

References

  1. Baldi, P. & Brunak, S. Bioinformatics: The Machine Learning Approach 2nd edn (MIT Press, Cambridge, MA, 2001).

    MATH  Google Scholar 

  2. Onami, S., Kyoda, K., Morohashi, M. & Kitano, H. in Foundations of Systems Biology (ed. Kitano, H.) 59–75 (MIT Press, Cambridge, MA, 2001).

    Google Scholar 

  3. Ideker, T. E., Thorsson, V. & Karp, R. M. in Pac. Symp. Biocomput. (eds Altman, R. B., Dunker, A. K., Hunter, L., Lauderdale, K. & Klein, T. E.) 305–316 (World Scientific, Singapore, 2000).

    Google Scholar 

  4. Ideker, T. et al. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18 (Suppl. 1), S233–S240 (2002).

    Article  Google Scholar 

  5. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Borisuk, M. T. & Tyson, J. J. Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69–85 (1998).

    Article  CAS  Google Scholar 

  7. Chen, K. C. et al. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369–391 (2000).

    Article  CAS  Google Scholar 

  8. Edwards, J. S., Ibarra, R. U. & Palsson, B. O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature Biotechnol. 19, 125–130 (2001).

    Article  CAS  Google Scholar 

  9. Fell, D. Understanding the Control of Metabolism (Portland, London, 1997).

    Google Scholar 

  10. Morohashi, M. et al. Robustness as a measure of plausibility in models of biochemical networks. J. Theor. Biol. 216, 19–30 (2002).

    Article  MathSciNet  CAS  Google Scholar 

  11. Kitano, H. Standards for modeling. Nature Biotechnol. 20, 337 (2002).

    Article  CAS  Google Scholar 

  12. Hucka, M. et al. in in Pac. Symp. Biocomput. (eds Altman, R. B., Dunker, A. K., Hunter, L. & Klein, T. E.) 450–461 (World Scientific, Singapore, 2002).

    Google Scholar 

  13. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  Google Scholar 

  14. Alliance for Cellular Signaling 〈http://www.AfCS.org/〉 (2002).

  15. Signal Transduction Knowledge Environment 〈http://www.stke.org/〉 (2002).

  16. Wiener, N. Cybernetics: Or Control and Communication in the Animal and the Machine (MIT Press, Cambridge, MA, 1948).

    Google Scholar 

  17. Bertalanffy, L. v. General System Theory (Braziller, New York, 1968).

    Google Scholar 

  18. Kitano, H. Systems biology: a brief overview. Science 295, 1662–1664 (2002).

    Article  ADS  CAS  Google Scholar 

  19. Kitano, H. in Foundations of Systems Biology (ed. Kitano, H.) 1–36 (MIT Press, Cambridge, MA, 2001).

    Book  Google Scholar 

  20. Alon, U. et al. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Yi, T. M. et al. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl Acad. Sci. USA 97, 4649–4653 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Weng, G., Bhalla, U. S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92–96 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Levine, K., Tinkelenberg, A. & Cross, F. in Progress in Cell Cycle Research (eds Meijer, L., Guidet, S. & Lim Tung, H. Y.) 101–114 (Plenum, New York, 1995).

    Book  Google Scholar 

  25. Chang, D. E., Smalley, D. J. & Conway, T. Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol. Microbiol. 45, 289–306 (2002).

    Article  CAS  Google Scholar 

  26. Little, J. W., Shepley, D. P. & Wert, D. W. Robustness of a gene regulatory circuit. EMBO J. 18, 4299–4307 (1999).

    Article  CAS  Google Scholar 

  27. Gonze, D., Halloy, J. & Goldbeter, A. Robustness of circadian rhythms with respect to molecular noise. Proc. Natl Acad. Sci. USA 99, 673–678 (2002).

    Article  ADS  CAS  Google Scholar 

  28. von Dassow, G. et al. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002).

    Article  ADS  CAS  Google Scholar 

  30. Carlson, J. M. & Doyle, J. Highly optimized tolerance: a mechanism for power laws in designed systems. Phys. Rev. E 60, 1412–1427 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Carlson, J. M. & Doyle, J. Complexity and robustness. Proc. Natl Acad. Sci. USA 99, 2538–2545 (2002).

    Article  ADS  Google Scholar 

  32. Jeong, H. et al. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000).

    Article  ADS  CAS  Google Scholar 

  33. Jeong, H. et al. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).

    Article  ADS  CAS  Google Scholar 

  34. Albert, R., Jeong, H. & Barabasi, A. L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).

    Article  ADS  CAS  Google Scholar 

  35. Podani, J. et al. Comparable system-level organization of Archaea and Eukaryotes. Nature Genet. 29, 54–56 (2001).

    Article  CAS  Google Scholar 

  36. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  ADS  CAS  Google Scholar 

  37. Adamic, L. A., Lukose, R. M., Puniyani, A. R. & Huberman, B. A. Search in power-law networks. Phys. Rev. E 64, 046135-1–046135-8 (2001).

    Article  ADS  Google Scholar 

  38. Higgins, J. The theory of oscillating reactions. Ind. Eng. Chem. 59, 18–62 (1967).

    Article  CAS  Google Scholar 

  39. Berridge, M. J. & Rapp, P. E. A comparative survey of the function, mechanism and control of cellular oscillators. J. Exp. Biol. 81, 217–279 (1979).

    CAS  PubMed  Google Scholar 

  40. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms (Cambirdge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  41. Tyson, J. J. in Computatoinal Cell Biology (eds Fall, C. P., Marland, E. S., Wagner, J. M. & Tyson, J. J.) 230–260 (Springer, New York, 2002).

    Google Scholar 

  42. Jordan, J. D., Landau, E. M. & Iyengar, R. Signaling networks: the origins of cellular multitasking. Cell 103, 193–200 (2000).

    Article  CAS  Google Scholar 

  43. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  ADS  CAS  Google Scholar 

  44. Hartwell, L. H. et al. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  Google Scholar 

  45. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).

    Article  ADS  CAS  Google Scholar 

  46. Edelman, G. M. & Gally, J. A. Degeneracy and complexity in biological systems. Proc. Natl Acad. Sci. USA 98, 13763–13768 (2001).

    Article  ADS  CAS  Google Scholar 

  47. Shen-Orr, S. S. et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002).

    Article  CAS  Google Scholar 

  48. Cascante, M. et al. Metabolic control analysis in drug discovery and disease. Nature Biotechnol. 20, 243–249 (2002).

    Article  CAS  Google Scholar 

  49. Bailey, J. E. Lessons from metabolic engineering for functional genomics and drug discovery. Nature Biotechnol. 17, 616–618 (1999).

    Article  CAS  Google Scholar 

  50. Bailey, J. E. Reflections on the scope and the future of metabolic engineering and its connections to functional genomics and drug discovery. Metab. Eng, 3, 111–114 (2001).

    Article  CAS  Google Scholar 

  51. Lipinski, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  Google Scholar 

  52. Butina, D., Segall, M. D. & Frankcombe, K. Predicting ADME properties in silico: methods and models. Drug Discov. Today 7, S83–S88 (2002).

    Article  CAS  Google Scholar 

  53. Ekins, S. & Rose, J. In silico ADME/Tox: the state of the art. J. Mol. Graph. Model. 20, 305–309 (2002).

    Article  CAS  Google Scholar 

  54. Selick, H. E., Beresford, A. P. & Tarbit, M. H. The emerging importance of predictive ADME simulation in drug discovery. Drug Discov. Today 7, 109–116 (2002).

    Article  Google Scholar 

  55. Li, A. P. & Segall, M. Early ADME/Tox studies and in silico screening. Drug Discov. Today 7, 25–27 (2002).

    Article  Google Scholar 

  56. Ekins, S. et al. Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods 44, 251–272 (2000).

    Article  CAS  Google Scholar 

  57. Ueda, H. R., Hagiwara, M. & Kitano, H. Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. J. Theor. Biol. 210, 401–406 (2001).

    Article  CAS  Google Scholar 

  58. Leloup, J. C., Gonze, D. & Goldbeter, A. Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14, 433–448 (1999).

    Article  CAS  Google Scholar 

  59. Schoeberl, B. et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnol. 20, 370–375 (2002).

    Article  Google Scholar 

  60. Tyson, J. J. & Novak, B. Regulation of the eukaryotic cell cycle: molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 210, 249–263 (2001).

    Article  CAS  Google Scholar 

  61. Novak, B. et al. Mathematical model of the fission yeast cell cycle with checkpoint controls at the G1/S, G2/M and metaphase/anaphase transitions. Biophys. Chem. 72, 185–200 (1998).

    Article  CAS  Google Scholar 

  62. Ni, T. C. & Savageau, M. A. Model assessment and refinement using strategies from biochemical systems theory: application to metabolism in human red blood cells. J. Theor. Biol. 179, 329–368 (1996).

    Article  CAS  Google Scholar 

  63. Ni, T. C. & Savageau, M. A. Application of biochemical systems theory to metabolism in human red blood cells. Signal propagation and accuracy of representation. J. Biol. Chem. 271, 7927–7941 (1996).

    Article  CAS  Google Scholar 

  64. Jamshidi, N. et al. Dynamic simulation of the human red blood cell metabolic network. Bioinformatics 17, 286–287 (2001).

    Article  CAS  Google Scholar 

  65. Edwards, J. S. & Palsson, B. O. Robustness analysis of the Escherichia coli metabolic network. Biotechnol. Prog. 16, 927–939 (2000).

    Article  CAS  Google Scholar 

  66. Bassingthwaighte, J. B. Strategies for the physiome project. Ann. Biomed. Eng. 28, 1043–1058 (2000).

    Article  CAS  Google Scholar 

  67. Rudy, Y. From genome to physiome: integrative models of cardiac excitation. Ann. Biomed. Eng. 28, 945–950 (2000).

    Article  CAS  Google Scholar 

  68. Noble, D. Modeling the heart—from genes to cells to the whole organ. Science 295, 1678–1682 (2002).

    Article  ADS  CAS  Google Scholar 

  69. Guet, C. C. et al. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002).

    Article  ADS  CAS  Google Scholar 

  70. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  ADS  CAS  Google Scholar 

  71. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank S. Imai, J. Doyle, J. Tyson, T.-M. Yi, N. Hiroi and M. Morohashi for their useful comments on the manuscript. This research is, in part, supported by: the Rice Genome and Simulation Project (Ministry of Agriculture), International Standard Development area of International Joint Research Grant (New Energy and Industrial Technology Development Organization (NEDO)/Japanese Ministry of Economy, Trade and Industry (METI)), Exploratory Research for Advanced Technology (ERATO) and Institute for Bioinformatics Research and Development (BIRD) program (Japan Science and Technology Corporation), and through the special coordination funds for promoting science and technology from the Japanese government's Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Kitano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitano, H. Computational systems biology. Nature 420, 206–210 (2002). https://doi.org/10.1038/nature01254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing