Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Noise in eukaryotic gene expression

Abstract

Transcription in eukaryotic cells has been described as quantal1, with pulses of messenger RNA produced in a probabilistic manner2,3. This description reflects the inherently stochastic nature4,5,6,7,8,9 of gene expression, known to be a major factor in the heterogeneous response of individual cells within a clonal population to an inducing stimulus10,11,12,13,14,15,16. Here we show in Saccharomyces cerevisiae that stochasticity (noise) arising from transcription contributes significantly to the level of heterogeneity within a eukaryotic clonal population, in contrast to observations in prokaryotes15, and that such noise can be modulated at the translational level. We use a stochastic model of transcription initiation specific to eukaryotes to show that pulsatile mRNA production, through reinitiation, is crucial for the dependence of noise on transcriptional efficiency, highlighting a key difference between eukaryotic and prokaryotic sources of noise. Furthermore, we explore the propagation of noise in a gene cascade network and demonstrate experimentally that increased noise in the transcription of a regulatory protein leads to increased cell–cell variability in the target gene output, resulting in prolonged bistable expression states. This result has implications for the role of noise in phenotypic variation and cellular differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional control of PGAL1*.
Figure 2: Effect of transcriptional and translational efficiency on noise strength.
Figure 3: Simulations of eukaryotic gene expression noise.
Figure 4: Cascading noise in a gene network and effect on cellular response.

Similar content being viewed by others

References

  1. Hume, D. A. Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96, 2323–2328 (2000)

    CAS  PubMed  Google Scholar 

  2. Ross, I. L., Browne, C. M. & Hume, D. A. Transcription of individual genes in eukaryotic cells occurs randomly and infrequently. Immunol. Cell Biol. 72, 177–185 (1994)

    Article  CAS  Google Scholar 

  3. Walters, M. C. et al. Enhancers increase the probability but not the level of gene expression. Proc. Natl Acad. Sci. USA 92, 7125–7129 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Ko, M. S. H. A stochastic model for gene induction. J. Theor. Biol. 153, 181–194 (1991)

    Article  CAS  Google Scholar 

  5. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Hasty, J., Pradines, J., Dolnik, M. & Collins, J. J. Noise-based switches and amplifiers for gene expression. Proc. Natl Acad. Sci. USA 97, 2075–2080 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. Natl Acad. Sci. USA 98, 8614–8619 (2001)

    Article  ADS  CAS  Google Scholar 

  8. Kepler, T. B. & Elston, T. C. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116–3136 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957)

    Article  ADS  CAS  Google Scholar 

  11. Ko, M. S. H., Nakauchi, H. & Takahashi, N. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 9, 2835–2842 (1990)

    Article  CAS  Google Scholar 

  12. Fiering, S. et al. Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor. Genes Dev. 4, 1823–1834 (1990)

    Article  CAS  Google Scholar 

  13. van Roon, M. A., Aten, J. A., van Oven, C. H., Charles, R. & Lamers, W. H. The initiation of hepatocyte-specific gene expression within embryonic hepatocytes is a stochastic event. Dev. Biol. 136, 508–516 (1989)

    Article  CAS  Google Scholar 

  14. Becskei, A., Séraphin, B. & Serrano, L. Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J. 20, 2528–2535 (2001)

    Article  CAS  Google Scholar 

  15. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    Article  CAS  Google Scholar 

  16. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Bhaumik, S. R. & Green, M. R. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev. 15, 1935–1945 (2001)

    Article  CAS  Google Scholar 

  19. Larschan, E. & Winston, F. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 15, 1946–1956 (2001)

    Article  CAS  Google Scholar 

  20. Rossi, F. M. V., Kringstein, A. M., Spicher, A., Guicherit, O. M. & Blau, H. M. Transcriptional control: rheostat converted to on/off switch. Mol. Cell 6, 723–728 (2000)

    Article  CAS  Google Scholar 

  21. Biggar, S. R. & Crabtree, G. R. Cell signaling can direct either binary or graded transcriptional responses. EMBO J. 20, 3167–3176 (2001)

    Article  CAS  Google Scholar 

  22. Chatterjee, S. & Struhl, K. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374, 820–822 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Klages, N. & Strubin, M. Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374, 822–823 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Struhl, K. Chromatin structure and RNA polymerase II connection: implications for transcription. Cell 84, 179–182 (1996)

    Article  CAS  Google Scholar 

  25. Hahn, S. Activation and the role of reinitiation in the control of transcription by RNA polymerase II. Cold Spring Harb. Symp. Quant. Biol. 63, 181–188 (1998)

    Article  CAS  Google Scholar 

  26. Sharp, P. M. & Li, W. H. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281–1295 (1987)

    Article  ADS  CAS  Google Scholar 

  27. Thattai, M. & van Oudenaarden, A. Attenuation of noise in ultrasensitive signaling cascades. Biophys. J. 82, 2943–2950 (2002)

    Article  CAS  Google Scholar 

  28. Kemkemer, R., Schrank, S., Vogel, W., Gruler, H. & Kaufmann, D. Increased noise as an effect of haploinsufficiency of the tumour-suppressor gene neurofibromatosis type 1 in vitro. Proc. Natl Acad. Sci. USA 99, 13783–13788 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Stewart, J. J. & Stargell, L. A. The stability of the TFIIA-TBP-DNA complex is dependent on the sequence of the TATAAA element. J. Biol. Chem. 276, 30078–30084 (2001)

    Article  CAS  Google Scholar 

  30. Yean, D. & Gralla, J. Transcription reinitiation rate: a special role for the TATA box. Mol. Cell. Biol. 17, 3809–3816 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Gilmore for guidance and helpful advice on switch construction, F. Isaacs for helpful discussions and advice, and B. Cormack for the gift of pEGFP3. This work was supported by DARPA, NSF and the Danish Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Collins.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, W., KÆrn, M., Cantor, C. et al. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003). https://doi.org/10.1038/nature01546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01546

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing