Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

The cytoskeleton, cellular motility and the reductionist agenda

Abstract

Eukaryotic cells depend on cytoskeletal polymers and molecular motors to establish their asymmetrical shapes, to transport intracellular constituents and to drive their motility. Cell biologists are using diverse experimental approaches to understand the molecular basis of cellular movements and to explain why defects in the component proteins cause disease. Much of the molecular machinery for motility evolved in early eukaryotes, so a limited set of general principles can explain the motility of most cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dendritic-nucleation model for protrusion of lamellipodia.

References

  1. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  2. Mohler, P. J. et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421, 634–639 (2003).

    Article  ADS  CAS  Google Scholar 

  3. Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nature Genet. 30, 201–204 (2002).

    Article  CAS  Google Scholar 

  4. Hu, A., Wang, F. & Sellers, J. R. Mutations in human nonmuscle myosin IIA found in patients with May-Hegglin anomaly and Fechtner syndrome result in impaired enzymatic function. J. Biol. Chem. 277, 46512–46517 (2002).

    Article  CAS  Google Scholar 

  5. van den Ent, F., Amos, L. A. & Lowe, J. Bacterial ancestry of actin tubulin. Curr. Opin. Microbiol. 634–638 (2001).

  6. Møller-Jensen, J., Jensen, R. B., Löwe, J. & Gerdes, K. Prokaryotic DNA segregation by an actin-like filament. EMBO J. 21, 3119–3127 (2002).

    Article  Google Scholar 

  7. Roberts, T. M. & Stewart, M. Acting like actin. The dynamics of the nematode major sperm protein (msp) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility. J. Cell Biol. 149, 7–12 (2000).

    Article  CAS  Google Scholar 

  8. Fuchs, E. & Cleveland, D. W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Mocz, G. & Gibbons, I. R. Model for the motor component of dynein heavy chain based on homology to the AAA family of oligometric ATPases. Structure 9, 93–103 (2001).

    Article  CAS  Google Scholar 

  10. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motors proteins. Science 288, 88–95 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Berg, J. S., Powell, B. C. & Cheney, R. E. A millennial myosin census. Mol. Biol. Cell 780–794 (2001).

  12. Tong, A. H. et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science. 295, 321–324 (2002).

    Article  ADS  CAS  Google Scholar 

  13. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Robinson, R. C. et al. Crystal structure of Arp2/3 complex. Science 294, 1660–1661 (2001).

    Article  Google Scholar 

  15. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature 404, 151–158 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Volkman, B. F., Prehoda, K. E., Scott, J. A., Peterson, F. C. & Lim, W. A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Syndrome. Cell 111, 565–576 (2002).

    Article  CAS  Google Scholar 

  17. Li, H., DeRosier, D. J., Nicholson, W. V., Nogales, E. & Downing, K. H. Microtubule structure at 8 A resolution. Structure. 10, 1317–1328 (2002).

    Article  CAS  Google Scholar 

  18. Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  ADS  CAS  Google Scholar 

  19. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).

    Article  CAS  Google Scholar 

  20. Watanabe, N. & Mitchison, T. J. Single-molecule speckle analysis of actin filament turnover in lamellipodia. Science 295, 1083–1086 (2002).

    Article  ADS  CAS  Google Scholar 

  21. Wang, L. & Brown, A. Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Mol. Biol. Cell 12, 3257–3267 (2001).

    Article  CAS  Google Scholar 

  22. Gerbal, F., Chaikin, P., Rabin, Y. & Prost, J. An elastic analysis of Listeria monocytogenes propulsion. Biophys J. 79, 2259–2275 (2000).

    Article  CAS  Google Scholar 

  23. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Walker, R. A. et al. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  Google Scholar 

  25. Amann, K. J. & Pollard, T. D. Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection microscopy. Proc. Natl Acad. Sci. USA 98, 15009–15013 (2001).

    Article  ADS  CAS  Google Scholar 

  26. Peterson, J. R. & Mitchison, T. J. Small molecules, big impact. A history of chemical inhibitors and the cytoskeleton. Chem. Biol. 9, 1275–1285 (2002).

    Article  CAS  Google Scholar 

  27. Bray, D. Bacterial chemotaxis and the question of gain. Proc. Natl Acad. Sci. USA 99, 7–9 (2002).

    Article  ADS  CAS  Google Scholar 

  28. Tyson, J. J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nature Rev. Mol. Cell Biol. 2, 908–916 (2001).

    Article  CAS  Google Scholar 

  29. Mogilner, A. & Edelstein-Keshet, L. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83, 1237–1258 (2002).

    Article  CAS  Google Scholar 

  30. Roy, P. et al. Local photorelease of caged thymosin β4 in locomoting keratocytes causes cell turning. J. Cell Biol. 153, 1035–1048 (2002).

    Article  Google Scholar 

  31. Pollard, T. D. & Earnshaw, W. C. Cell Biology (W. B. Saunders, New York, 2002).

    Google Scholar 

  32. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Biophysics of actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Pollard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard, T. The cytoskeleton, cellular motility and the reductionist agenda. Nature 422, 741–745 (2003). https://doi.org/10.1038/nature01598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing