Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surface plasmon subwavelength optics

Abstract

Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons—in particular their interaction with light—can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An SP waveguide.
Figure 2: SP photonic bandgap.
Figure 3: Surface plasmon Bragg reflector.
Figure 4: Normal incidence transmission for subwavelength holes.
Figure 5: Calculated pattern of light emerging from a single slit surrounded by a finite array of grooves (courtesy of F. J. García-Vidal, Universidad Autonoma de Madrid, Spain) and L. Martín-Moreno (Universidad de Zaragoza, Spain).

Similar content being viewed by others

References

  1. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Burstein, E. in Polaritons (eds Burstein, E. & De Martini, F.) 1–4 (Pergamon, New York, 1974).

    Google Scholar 

  3. Hecht, B., Bielefeldt, H., Novotny, L., Inouye, Y. & Pohl, D. W. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett. 77, 1889–1892 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Pendry, J. Playing tricks with light. Science 285, 1687–1688 (1999).

    Article  CAS  Google Scholar 

  5. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Nie, S. M. & Emery, S. R. Probing single molecules and single nanoparticles by surface- enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  7. Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensors Actuat. B 54, 3–15 (1999).

    Article  CAS  Google Scholar 

  8. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R. & Feld, M. S. Surface enhanced Raman scattering and biophysics. J. Phys. C 14, R597–R624 (2002).

    CAS  Google Scholar 

  9. Sambles, J. R., Bradbery, G. W. & Yang, F. Z. Optical-excitation of surface-plasmons – an introduction. Contemp. Phys. 32, 173–183 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Kretschmann, E. & Raether, H. Radiative decay of nonradiative surface plasmons excited by light. Z. Naturforsch. A 23, 2135–2136 (1968).

    ADS  CAS  Google Scholar 

  11. Otto, A. Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398 (1968).

    Article  ADS  CAS  Google Scholar 

  12. Ditlbacher, H. et al. Fluorescence imaging of surface plasmon fields. Appl. Phys. Lett. 80, 404–406 (2002).

    Article  ADS  CAS  Google Scholar 

  13. Ritchie, R. H., Arakawa, E. T., Cowan, J. J. & Hamm, R. N. Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett. 21, 1530–1533 (1968).

    Article  ADS  CAS  Google Scholar 

  14. Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 4, 396 (1902).

    Article  Google Scholar 

  15. Raether, H. Surface Plasmons (ed. Hohler, G.) (Springer, Berlin, 1988).

  16. Moreland, J., Adams, A. & Hansma, P. K. Efficiency of light emission from surface plasmons. Phys. Rev. B 25, 2297–2300 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Worthing, P. T. & Barnes, W. L. Efficient coupling of surface plasmon polaritons to radiation using a bi-grating. Appl. Phys. Lett. 79, 3035–3037 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Ditlbacher, H., Krenn, J. R., Schider, G., Leitner, A. & Aussenegg, F. R. Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002).

    Article  ADS  CAS  Google Scholar 

  19. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  CAS  Google Scholar 

  20. Kitson, S. C., Barnes, W. L. & Sambles, J. R. A full photonic band gap for surface modes in the visible. Phys. Rev. Lett. 77, 2670–2673 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Barnes, W. L., Preist, T. W., Kitson, S. C. & Sambles, J. R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B 54, 6227–6244 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Barnes, W. L., Kitson, S. C., Preist, T. W. & Sambles, J. R. Photonic surfaces for surface plasmon polaritons. J. Opt. Soc. Am. A 14, 1654–1661 (1997).

    Article  ADS  Google Scholar 

  23. Kreibig, U. & Vollmer, M. Optical properties of metal clusters (Springer, Berlin, 1995).

  24. Special issue: Optical Properties of Nanoparticles. Appl. Phys. B 73 (2001).

  25. Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001).

    Article  CAS  Google Scholar 

  26. Sonnichsen, C. et al. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77, 2949–2951 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Schultz, D. A. Plasmon resonant particles for biological detection. Curr. Opin. Biotechnol. 14, 13–22 (2003).

    Article  CAS  Google Scholar 

  28. Oldenburg, S. J., Genick, C. C., Clark, K. A. & Schultz, D. A. Base pair mismatch recognition using plasmon resonant particle labels. Anal. Biochem. 309, 109–116 (2002).

    Article  CAS  Google Scholar 

  29. Félidj, N. et al. Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82, 3095–3097 (2003).

    Article  ADS  Google Scholar 

  30. Levi, S. A. et al. Fluorescence of dyes adsorbed on highly organized, nanostructured gold surfaces. Chem.-a Eur. J. 8, 3808–3814 (2002).

    Article  CAS  Google Scholar 

  31. Vargas-Baca, I. et al. Linear and nonlinear optical responses of a dye anchored to gold nanoparticles dispersed in liquid and polymeric matrixes. Can. J. Chem. 80, 1625–1633 (2002).

    Article  CAS  Google Scholar 

  32. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).

    Article  ADS  CAS  Google Scholar 

  33. Kottmann, J. P. & Martin, O. J. F. Retardation-induced plasmon resonances in coupled nanoparticles. Opt. Lett. 26, 1096–1098 (2001).

    Article  ADS  CAS  Google Scholar 

  34. García-Vidal, F. J. & Pendry, J. B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166 (1996).

    Article  ADS  Google Scholar 

  35. Gresillon, S. et al. Experimental observation of localized optical excitations in random metal-dielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999).

    Article  ADS  CAS  Google Scholar 

  36. Weeber, J. C. et al. Observation of light confinement effects with a near-field optical microscope. Phys. Rev. Lett. 77, 5332–5335 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Devaux, E. et al. Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B 62, 10504–10514 (2000).

    Article  ADS  CAS  Google Scholar 

  38. Silva, T. J. & Schultz, S. A scanning near-field optical microscope for the imaging of magnetic domains in reflection. Rev. Sci. Instr. 67, 715–725 (1996).

    Article  ADS  CAS  Google Scholar 

  39. Hermann, C. et al. Surface-enhanced magneto-optics in metallic multilayer films. Phys. Rev. B 64, 235422 (2001).

    Article  ADS  Google Scholar 

  40. Kottmann, J. P., Martin, O. J. F., Smith, D. R. & Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 64, 5402 (2001).

    Article  Google Scholar 

  41. Weeber, J. C., Dereux, A., Girard, C., Krenn, J. R. & Goudonnet, J. P. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B 60, 9061–9068 (1999).

    Article  ADS  CAS  Google Scholar 

  42. Weeber, J. C. et al. Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys. Rev. B 64, 045411 (2001).

    Article  ADS  Google Scholar 

  43. Bozhevolnyi, S. I., Erland, J., Leosson, K., Skovgaard, P. M. W. & Hvam, J. M. Waveguiding in surface plasmon polariton band gap structures. Phys. Rev. Lett. 86, 3008–3011 (2001).

    Article  ADS  CAS  Google Scholar 

  44. Bozhevolnyi, S. I., Volkov, V. S. & Leosson, K. Localization and waveguiding of surface plasmon polaritons in random nanostructures. Phys. Rev. Lett. 89, 186801 (2002).

    Article  ADS  Google Scholar 

  45. Krenn, J. R. et al. Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys. Rev. Lett. 82, 2590–2593 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mat. 2, 229–232 (2003).

    Article  CAS  Google Scholar 

  47. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  CAS  Google Scholar 

  48. Ghaemi, H. F., Thio, T., Grupp, D. E., Ebbesen, T. W. & Lezec, H. J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 58, 6779–6782 (1998).

    Article  ADS  CAS  Google Scholar 

  49. Krishnan, A. et al. Evanescently coupled resonance in surface plasmon enhanced transmission. Opt. Commun. 200, 1–7 (2001).

    Article  ADS  CAS  Google Scholar 

  50. Degiron, A., Lezec, H. J., Barnes, W. L. & Ebbesen, T. W. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys. Lett. 81, 4327–4329 (2002).

    Article  ADS  CAS  Google Scholar 

  51. Martín-Moreno, L. et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001).

    Article  ADS  Google Scholar 

  52. Bonod, N., Enoch, S., Li, L., Popov, E. & Nevière, M. Resonant optical transmission through thin metallic films with and without holes. Opt. Expr. 11, 482–490 (2003).

    Article  ADS  CAS  Google Scholar 

  53. Vigoureux, V. M. Analysis of the Ebbesen experiment in the light of evanescent short range diffraction. Opt. Commun. 198, 257–263 (2001).

    Article  ADS  CAS  Google Scholar 

  54. Salomon, L., Grillot, F. D., Zayats, A. V. & de Fornel, F. Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. Phys. Rev. Lett. 86, 1110–1113 (2001).

    Article  ADS  CAS  Google Scholar 

  55. Darmanyan, S. A. & Zayats, A. V. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films. Phys. Rev. B 67, 035424 (2003).

    Article  ADS  Google Scholar 

  56. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  ADS  CAS  Google Scholar 

  57. Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 107, 1895 (2002).

    Google Scholar 

  58. Martín-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. Theory of highly directional emission from a single sub-wavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003).

    Article  ADS  Google Scholar 

  59. Hibbins, A. P., Sambles, J. R. & Lawrence, C. R. Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate. Appl. Phys. Lett. 81, 4661–4663 (2002).

    Article  ADS  CAS  Google Scholar 

  60. Porto, J. A., García-Vidal, F. J. & Pendry, J. B. Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999).

    Article  ADS  CAS  Google Scholar 

  61. García-Vidal, F. J. & Martín-Moreno, L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys. Rev. B 66, 155412 (2002).

    Article  ADS  Google Scholar 

  62. Barbara, A., Quemerais, P., Bustarret, E. & Lopez-Rios, T. Optical transmission through subwavelength metallic gratings. Phys. Rev. B 66, 161403 (2002).

    Article  ADS  Google Scholar 

  63. Baida, F. I. & Van Labeke, D. Light transmission by subwavelength annular aperture arrays in metallic films. Opt. Commun. 209, 17–22 (2002).

    Article  ADS  CAS  Google Scholar 

  64. García-Vidal, F. J., Lezec, H. J., Ebbesen, T. W. & Martín-Moreno, L. Multiple paths to enhance optical transmission through a single subwavelength slit. Phys. Rev. Lett. 90, 213901 (2003).

    Article  ADS  Google Scholar 

  65. Weber, W. H. & Eagen, C. F. Energy transfer from an excited dye molecule to the sureface plasmons of an adjacent metal. Opt. Lett. 4, 236–238 (1979).

    Article  ADS  CAS  Google Scholar 

  66. Pockrand, I., Brillante, A. & Möbius, D. Nonradiative decay of excited molecules near a metal surface. Chem. Phys. Lett. 69, 499–504 (1980).

    Article  ADS  CAS  Google Scholar 

  67. Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998).

    Article  ADS  CAS  Google Scholar 

  68. Hobson, P. A., Wedge, S., Wasey, J. A. E., Sage, I. & Barnes, W. L. Surface plasmon mediated emission from organic light emitting diodes. Adv. Mat. 14, 1393–1396 (2002).

    Article  CAS  Google Scholar 

  69. Andrew, P., Kitson, S. C. & Barnes, W. L. Surface plasmon energy gaps and photoabsorption. J. Mod. Opt. 44, 395–406 (1997).

    Article  ADS  CAS  Google Scholar 

  70. Westphalen, M., Kreibig, U., Rostalski, J., Luth, H. & Meissner, D. Metal cluster enhanced organic solar cells. Sol. Energy Mat. Sol. Cells 61, 97–105 (2000).

    Article  CAS  Google Scholar 

  71. Tredicucci, A. et al. Single-mode surface-plasmon laser. Appl. Phys. Lett. 76, 2164–2166 (2000).

    Article  ADS  CAS  Google Scholar 

  72. Coutaz, J. L., Neviere, M., Pic, E. & Reinisch, R. Experimental study of surface-enhanced second-harmonic generation on silver gratings. Phys. Rev. B 32, 2227–2232 (1985).

    Article  ADS  CAS  Google Scholar 

  73. Quail, J. C. & Simon, H. J. Second-harmonic generation with phase-matched long-range and short-range surface plasmons. J. Appl. Phys. 56, 2589–2591 (1984).

    Article  ADS  CAS  Google Scholar 

  74. Tsang, T. Y. F. Surface-plasmon-enhanced third-harmonic generation in thin silver films. Opt. Lett. 21, 245–247 (1996).

    Article  ADS  CAS  Google Scholar 

  75. Smolyaninov, I. I., Zayats, A. V., Gungor, A. & Davis, C. C. Single-photon tunneling via localized surface plasmons. Phys. Rev. Lett. 88, 187402 (2002).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, W., Dereux, A. & Ebbesen, T. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003). https://doi.org/10.1038/nature01937

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01937

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing