Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent developments in compact ultrafast lasers

Abstract

Ultrafast lasers, which generate optical pulses in the picosecond and femtosecond range, have progressed over the past decade from complicated and specialized laboratory systems to compact, reliable instruments. Semiconductor lasers for optical pumping and fast optical saturable absorbers, based on either semiconductor devices or the optical nonlinear Kerr effect, have dramatically improved these lasers and opened up new frontiers for applications with extremely short temporal resolution (much smaller than 10 fs), extremely high peak optical intensities (greater than 10 TW/cm2) and extremely fast pulse repetition rates (greater than 100 GHz).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pulses from a passively modelocked Nd:glass laser with a dye saturable absorber inside the laser resonator.
Figure 2: Improvements in ultrashort pulse generation since the first demonstration of a laser in 1960.
Figure 3: Kerr lens modelocking is obtained through a Kerr lens at an intracavity focus in the gain medium or in another material, where the refractive index increases with intensity Δn=n2 I(r,t), where n2 is the nonlinear refractive index and I(r,t) the radial- and time-dependent intensity of a short-pulsed laser beam.
Figure 4

Similar content being viewed by others

References

  1. Maria, A. J. D., Stetser, D. A. & Heynau, H. Self mode-locking of lasers with saturable absorbers. Appl. Phys. Lett. 8, 174–176 (1966).

    ADS  Google Scholar 

  2. Keller, U. et al. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. Opt. Lett. 17, 505–507 (1992).

    ADS  CAS  PubMed  Google Scholar 

  3. Keller, U. et al. Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).

    ADS  CAS  Google Scholar 

  4. Keller, U. in Nonlinear Optics in Semiconductors (eds Garmire, E. & Kost, A.) 211–286 (Academic Press, Boston, 1999).

    Google Scholar 

  5. Spence, D. E., Kean, P. N. & Sibbett, W. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16, 42–44 (1991).

    ADS  CAS  PubMed  Google Scholar 

  6. Innerhofer, E. et al. 60 W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Opt. Lett. 28, 367–369 (2003).

    ADS  CAS  PubMed  Google Scholar 

  7. Krainer, L. et al. Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz. IEEE J. Quantum Electron. 38, 1331–1338 (2002).

    ADS  CAS  Google Scholar 

  8. Shah, J. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  9. Zewail, A. H. Femtochemistry: Recent progess in studies of dynamics and control of reactions and their transition states. J. Phys. Chem. 100, 12701 (1996).

    CAS  Google Scholar 

  10. Zewail, A. H. Femtochemistry: atomic-scale dynamics of chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    CAS  Google Scholar 

  11. Valdmanis, J. A. & Mourou, G. A. Subpicosecond electrooptic sampling: principles and applications. IEEE J. Quantum Electron. 22, 69–78 (1986).

    ADS  Google Scholar 

  12. Weingarten, K. J., Rodwell, M. J. W. & Bloom, D. M. Picosecond optical sampling of GaAs integrated circuits. IEEE J. Quantum Electron. 24, 198–220 (1988).

    ADS  Google Scholar 

  13. Ramaswami, R. & Sivarajan, K. Optical Networks: A Practical Perspective (Morgan Kaufmann, 1998).

    Google Scholar 

  14. Mollenauer, L. F. et al. Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Opt. Lett. 25, 704–706 (2000).

    ADS  CAS  PubMed  Google Scholar 

  15. Miller, D. A. B. Optical interconnects to silicon. IEEE J. Sel. Top. Quantum Electron. 6, 1312–1317 (2000).

    ADS  CAS  Google Scholar 

  16. Krishnamoorthy, A. V. & Miller, D. A. B. Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap. IEEE J. Sel. Top. Quantum Electron. 2, 55–76 (1996).

    ADS  CAS  Google Scholar 

  17. Hatziefremidis, A., Papadopoulos, D. N., Fraser, D. & Avramopoulos, H. Laser sources for polarized electron beams in cw and pulsed accelerators. Nucl. Instrum. Meth. A 431, 46–52 (1999).

    ADS  CAS  Google Scholar 

  18. Mollenauer, L. F. & Mamyshev, P. V. Massive wavelength-division multiplexing with solitons. IEEE J. Quantum Electron. 34, 2089–2102 (1998).

    ADS  CAS  Google Scholar 

  19. Krainer, L. et al. Tunable picosecond pulse-generating laser with a repetition rate exceeding 10 GHz. Electron. Lett. 38, 225–227 (2002).

    CAS  Google Scholar 

  20. Zeller, S. C. et al. Passively modelocked 40-GHz Er:Yb:glass laser. Appl. Phys. B 76, 787–788 (2003).

    ADS  CAS  Google Scholar 

  21. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fujimoto, J. G. Optical coherence tomography. C. R. Acad. Sci. Paris Serie IV 2, 1099–1111 (2001).

    CAS  Google Scholar 

  23. Boivin, L., Wegmueller, M., Nuss, M. C. & Knox, W. H. 110 Channels × 2.35 Gb/s from a single femtosecond laser. IEEE Photonics Technology Lett. 11, 466–468 (1999).

    ADS  Google Scholar 

  24. Souza, E. A. D., Nuss, M. C., Knox, W. H. & Miller, D. A. B. Wavelength-division multiplexing with femtosecond pulses. Opt. Lett. 20, 1166–1168 (1995).

    ADS  PubMed  Google Scholar 

  25. Spühler, G. J. et al. Novel multi-wavelength source with 25-GHz channel spacing tunable over the C-band. Electron. Lett. 39, 778–780 (2003).

    Google Scholar 

  26. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    ADS  CAS  PubMed  Google Scholar 

  27. Holzwarth, R., Zimmermann, M., Udem, T. & Hänsch, T. W. Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb. IEEE J. Quantum Electron. 37, 1493–1501 (2001).

    ADS  CAS  Google Scholar 

  28. Stenger, J. et al. Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser. Phys. Rev. A 63, 021802 (2001).

    ADS  Google Scholar 

  29. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  CAS  PubMed  Google Scholar 

  30. Telle, H. R. et al. Carrier-envelope offset phase control: A novel concept for asolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327–332 (1999).

    ADS  CAS  Google Scholar 

  31. Helbing, F. W., Steinmeyer, G., Stenger, J., Telle, H. R. & Keller, U. Carrier-envelope-offset dynamics and stabilization of femtosecond pulses. Appl. Phys. B 74, S35–S42 (2002).

    ADS  CAS  Google Scholar 

  32. Paulus, G. G. et al. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature 414, 182–184 (2001).

    ADS  CAS  PubMed  Google Scholar 

  33. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  CAS  PubMed  Google Scholar 

  34. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    ADS  CAS  PubMed  Google Scholar 

  35. Liu, X., Du, D. & Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 33, 1706–1716 (1997).

    ADS  CAS  Google Scholar 

  36. Nolte, S. et al. Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716–2722 (1997).

    ADS  CAS  Google Scholar 

  37. von der Linde, D., Sokolowski-Tinten, K. & Bialkowski, J. Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci. 109/110, 1–10 (1997).

    ADS  CAS  Google Scholar 

  38. Siders, C. W. et al. Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342 (1999).

    CAS  PubMed  Google Scholar 

  39. Rousse, A. et al. Non-termal melting in semiconductors measured at femtosecond resolution. Nature 410, 65–68 (2001).

    ADS  CAS  PubMed  Google Scholar 

  40. Loesel, F. H., Niemz, M. H., Bille, J. F. & Juhasz, T. Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model. IEEE J. Quantum Electron. 32, 1717–1722 (1996).

    ADS  CAS  Google Scholar 

  41. Hammer, D. X. et al. Experimental investigation of ultrashort pulse laser induced breakdown thresholds in aqueous media. IEEE J. Quantum Electron. 32, 670–678 (1996).

    ADS  CAS  Google Scholar 

  42. Juhasz, T. et al. Corneal refractive surgery with femtosecond lasers. IEEE J. Sel. Top. Quantum Electron. 5, 902–910 (1999).

    ADS  CAS  Google Scholar 

  43. Loesel, F. H. et al. Non-thermal ablation of neural tissue with femtosecond laser pulses. Appl. Phys. B 66, 121–128 (1998).

    ADS  CAS  Google Scholar 

  44. Südmeyer, T. et al. Nonlinear femtosecond pulse compression at high average power levels using a large area holey fiber. Opt. Lett. (in the press).

  45. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Opt. Phys. 21, L31–L35 (1988).

    CAS  Google Scholar 

  46. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  CAS  PubMed  Google Scholar 

  47. Murnane, M. M., Kapteyn, H. C., Rosen, M. D. & Falcone, R. W. Ultrafast X-Ray pulses from laser-produced plasmas. Science 251, 531–536 (1991).

    ADS  CAS  PubMed  Google Scholar 

  48. Schmidt, O. et al. Time-resolved two-photon photoemission electron microscopy. Appl. Phys. B 74, 223–227 (2002).

    ADS  CAS  Google Scholar 

  49. Bauer, M. et al. Direct observation of surface chemistry using ultrafast soft-X-ray pulses. Phys. Rev. Lett. 87, 025501 (2001).

    ADS  Google Scholar 

  50. Shank, C. V. in Ultrashort Laser Pulses and Applications (ed. Kaiser, W.) Chapter 2 (Springer, Heidelberg, 1988).

    Google Scholar 

  51. Diels, J.-C. in Dye lasers principles: with applications (eds Duarte, F. J. and Hillman, L. W.) 41–132 (Academic Press, Boston, 1990).

    Google Scholar 

  52. Shank, C. V. & Ippen, E. P. Subpicosecond kilowatt pulses from a modelocked cw dye laser. Appl. Phys. Lett. 24, 373–375 (1974).

    ADS  CAS  Google Scholar 

  53. Fork, R. L., Cruz, C. H. B., Becker, P. C. & Shank, C. V. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987).

    ADS  CAS  PubMed  Google Scholar 

  54. Moulton, P. F. Spectroscopic and laser characteristics of Ti:Al2O3 . J. Opt. Soc. Am. B 3, 125–132 (1986).

    ADS  CAS  Google Scholar 

  55. Ishida, Y., Sarukura, N. & Nakano, H. in Ultrafast Phenomena PD11-11 (OSA, California, 1990).

    Google Scholar 

  56. Spence, D. E., Kean, P. N. & Sibbett, W. in Conference on lasers and electro-optics (CLEO) CPDP10 (OSA/IEEE LEOS, Anaheim, California, 1990).

    Google Scholar 

  57. Keller, U., 'tHooft, G. W., Knox, W. H. & Cunningham, J. E. Femtosecond pulses from a continuously self-starting passively mode-locked Ti:Sapphire laser. Opt. Lett. 16, 1022–1024 (1991).

    ADS  CAS  PubMed  Google Scholar 

  58. Salin, F., Squier, J. & Piché, M. Modelocking of Ti:Sapphire lasers and self-focusing: a Gaussian approximation. Opt. Lett. 16, 1674–1676 (1991).

    ADS  CAS  PubMed  Google Scholar 

  59. Negus, D. K., Spinelli, L., Goldblatt, N. & Feugnet, G. in Advanced Solid-State Lasers (eds Dubé, G. & Chase, L.) 120–124 (Optical Society of America, Washington D.C., 1991).

    Google Scholar 

  60. Keller, U., Knox, W. H. & 'tHooft, G. W. Ultrafast solid-state modelocked lasers using resonant nonlinearities. IEEE J. Quantum Electron. 28, 2123–2133 (1992).

    ADS  CAS  Google Scholar 

  61. Valdmanis, J. A. & Fork, R. L. Design considerations for a femtosecond pulse laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain. IEEE J. Quantum Electron. 22, 112–118 (1986).

    ADS  Google Scholar 

  62. Sutter, D. H. et al. Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24, 631–633 (1999).

    ADS  CAS  PubMed  Google Scholar 

  63. Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373–375 (2001).

    ADS  CAS  PubMed  Google Scholar 

  64. Cerullo, G., De Silvestri, S., Magni, V. & Pallaro, L. Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers. Opt. Lett. 19, 807–809 (1994).

    ADS  CAS  PubMed  Google Scholar 

  65. Cerullo, G., De Silvestri, S. & Magni, V. Self-starting Kerr lens mode-locking of a Ti:sapphire laser. Opt. Lett. 19, 1040–1042 (1994).

    ADS  CAS  PubMed  Google Scholar 

  66. Gibson, A. F., Kimmitt, M. F. & Norris, B. Generation of bandwidth-limited pulses from a TEA CO2 laser using p-type germanium. Appl. Phys. Lett. 24, 306–307 (1974).

    ADS  CAS  Google Scholar 

  67. Ippen, E. P., Eichenberger, D. J. & Dixon, R. W. Picosecond pulse generation by passive modelocking of diode lasers. Appl. Phys. Lett. 37, 267–269 (1980).

    ADS  CAS  Google Scholar 

  68. Islam, M. N. et al. Color center lasers passively mode locked by quantum wells. IEEE J. Quantum Electron. 25, 2454–2463 (1989).

    ADS  CAS  Google Scholar 

  69. Hönninger, C., Paschotta, R., Morier-Genoud, F., Moser, M. & Keller, U. Q-switching stability limits of continuous-wave passive mode locking. J. Opt. Soc. Am. B 16, 46–56 (1999).

    ADS  Google Scholar 

  70. Paschotta, R. & Keller, U. Passive mode locking with slow saturable absorbers. Appl. Phys. B 73, 653–662 (2001).

    ADS  CAS  Google Scholar 

  71. Kärtner, F. X., Jung, I. D. & Keller, U. Soliton Modelocking with Saturable Absorbers. IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).

    ADS  Google Scholar 

  72. Ell, R. et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373–375 (2001).

    ADS  CAS  PubMed  Google Scholar 

  73. Nisoli, M. et al. Compression of high energy laser pulses below 5 fs. Optics Lett. 22, 522–524 (1997).

    ADS  CAS  Google Scholar 

  74. Shirakawa, A., Sakane, I., Takasaka, M. & Kobayashi, T. Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification. Appl. Phys. Lett. 74, 2268–2270 (1999).

    ADS  CAS  Google Scholar 

  75. Gallmann, L. et al. Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1314–1316 (1999).

    ADS  CAS  PubMed  Google Scholar 

  76. Schenkel, B. et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. (in the press).

  77. Gallmann, L., Sutter, D. H., Matuschek, N., Steinmeyer, G. & Keller, U. Techniques for the characterization of sub-10-fs optical pulses: a comparison. Appl. Phys. B 70, S67–S75 (2000).

    ADS  CAS  Google Scholar 

  78. Fork, R. L., Martinez, O. E. & Gordon, J. P. Negative dispersion using pairs of prisms. Opt. Lett. 9, 150–152 (1984).

    ADS  CAS  PubMed  Google Scholar 

  79. Asaki, M. T. et al. Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. Opt. Lett. 18, 977–979 (1993).

    ADS  CAS  PubMed  Google Scholar 

  80. Curley, P. F. et al. Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group-delay dispersion. Opt. Lett. 18, 54–56 (1993).

    ADS  CAS  PubMed  Google Scholar 

  81. Zhou, J. et al. Pulse evolution in a broad-bandwidth Ti:sapphire laser. Opt. Lett. 19, 1149–1151 (1994).

    ADS  CAS  PubMed  Google Scholar 

  82. Szipöcs, R., Ferencz, K., Spielmann, C. & Krausz, F. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201–203 (1994).

    ADS  PubMed  Google Scholar 

  83. Stingl, A., Lenzner, M., Ch. Spielmann, Krausz, F. & Szipöcs, R. Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett. 20, 602–604 (1995).

    ADS  CAS  PubMed  Google Scholar 

  84. Kärtner, F. X. et al. Design and fabrication of double-chirped mirrors. Opt. Lett. 22, 831–833 (1997).

    ADS  PubMed  Google Scholar 

  85. Matuschek, N., Kärtner, F. X. & Keller, U. Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics. IEEE J. Quantum Electron. 35, 129–137 (1999).

    ADS  CAS  Google Scholar 

  86. Matuschek, N., Gallmann, L., Sutter, D. H., Steinmeyer, G. & Keller, U. Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics. Appl. Phys. B 71, 509–522 (2000).

    ADS  Google Scholar 

  87. Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics. Science 286, 1507–1512 (1999).

    CAS  PubMed  Google Scholar 

  88. Xu, L. et al. Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008–2010 (1996).

    ADS  CAS  PubMed  Google Scholar 

  89. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  CAS  PubMed  Google Scholar 

  90. Apolonski, A. et al. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740 (2000).

    ADS  CAS  PubMed  Google Scholar 

  91. Südmeyer, T. et al. Femtosecond fiber-feedback OPO. Opt. Lett. 26, 304–306 (2001).

    ADS  PubMed  Google Scholar 

  92. Paschotta, R. et al. Diode-pumped passively mode-locked lasers with high average power. Appl. Phys. B 70, S25–S31 (2000).

    CAS  Google Scholar 

  93. Giesen, A. et al. Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 58, 363–372 (1994).

    ADS  Google Scholar 

  94. Krainer, L. et al. Passively mode-locked Nd:YVO4 laser with up to 13 GHz repetition rate. Appl. Phys. B 69, 245–247 (1999).

    ADS  CAS  Google Scholar 

  95. Krainer, L., Paschotta, R., Moser, M. & Keller, U. 77 GHz soliton modelocked Nd:YVO4 laser. Electron. Lett. 36, 1846–1848 (2000).

    CAS  Google Scholar 

  96. Lecomte, S. et al. Optical parametric oscillator with 10 GHz repetition rate and 100 mW average output power in the 1.5-mm spectral region. Opt. Lett. 27, 1714–1717 (2002).

    ADS  CAS  PubMed  Google Scholar 

  97. Yoshida, E. & Nakazawa, M. 80200GHz erbium doped fibre laser using a rational harmonic mode-locking technique. Electron. Lett. 32, 1370–1372 (1996).

    CAS  Google Scholar 

  98. Arahira, S., Matsui, Y. & Ogawa, Y. Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes. IEEE J. Quantum Electron. 32, 1211–1224 (1996).

    ADS  CAS  Google Scholar 

  99. Hoogland, S. et al. Passively mode-locked diode-pumped surface-emitting semiconductor laser. IEEE Photon. Technol. Lett. 12, 1135–1138 (2000).

    ADS  Google Scholar 

  100. Häring, R. et al. High–power passively mode–locked semiconductor lasers. IEEE J. Quantum Electron. 38, 1268–1275 (2002).

    ADS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge many important contributions from my graduate students, post-docs and collaborators. I would like to mention Rüdiger Paschotta, Günter Steinmeyer, Franz Kärtner, Markus Haiml who have been senior researchers and project leaders in my group at different times during the last 10 years and Kurt Weingarten, Gabriel Spühler and Lukas Krainer from GigaTera Inc. on the most recent work on high pulse repetition rate lasers. This work has been supported by ETH, the Swiss National Science Foundation (SNF) and the Swiss Technology and Innovation Foundation (KTI).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003). https://doi.org/10.1038/nature01938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01938

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing