Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels

Abstract

ClC Cl- channels make up a large molecular family, ubiquitous with respect to both organisms and cell types. In eukaryotes, these channels fulfill numerous biological roles requiring gated anion conductance, from regulating skeletal muscle excitability to facilitating endosomal acidification by (H+)ATPases. In prokaryotes, ClC functions are unknown except in Escherichia coli, where the ClC-ec1 protein promotes H+ extrusion activated in the extreme acid-resistance response common to enteric bacteria. Recently, the high-resolution structure of ClC-ec1 was solved by X-ray crystallography. This primal prokaryotic ClC structure has productively guided understanding of gating and anion permeation in the extensively studied eukaryotic ClC channels. We now show that this bacterial homologue is not an ion channel, but rather a H+-Cl- exchange transporter. As the same molecular architecture can support two fundamentally different transport mechanisms, it seems that the structural boundary separating channels and transporters is not as clear cut as generally thought.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proton dependence of ClC-ec1 currents.
Figure 2: H+ and Cl- dependence of reversal potential.
Figure 3: Secondary active transport.
Figure 4: E148A mutation abolishes H+ dependence of reversal potential.
Figure 5: Occlusion of the central Cl- ion in ClC-ec1. A cut-away view transecting the central Cl--coordination region of a single ClC-ec1 subunit is shown in surface representation.

Similar content being viewed by others

References

  1. Accardi, A., Kolmakova-Partensky, L., Williams, C. & Miller, C. Ionic currents mediated by a prokaryotic homologue of CLC Cl- channels. J. Gen. Physiol. 123, 109–119 (2004)

    Article  CAS  Google Scholar 

  2. Iyer, R., Iverson, T. M., Accardi, A. & Miller, C. A biological role for prokaryotic ClC chloride channels. Nature 419, 715–718 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Maduke, M., Pheasant, D. J. & Miller, C. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J. Gen. Physiol. 114, 713–722 (1999)

    Article  CAS  Google Scholar 

  4. Foster, D. L., Garcia, M. L., Newman, M. J., Patel, L. & Kaback, H. R. Lactose-proton symport by purified lac carrier protein. Biochemistry 21, 5634–5638 (1982)

    Article  CAS  Google Scholar 

  5. Schellenberg, G. D. & Swanson, P. D. Solubilization and reconstitution of membranes containing the Na+-Ca2+ exchange carrier from rat brain. Biochim. Biophys. Acta 690, 133–144 (1982)

    Article  CAS  Google Scholar 

  6. Weinman, E. J., Shenolikar, S., Cragoe, E. J. Jr & Dubinsky, W. P. Solubilization and reconstitution of renal brush border Na+-H+ exchanger. J. Membr. Biol. 101, 1–9 (1988)

    Article  CAS  Google Scholar 

  7. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Dutzler, R., Campbell, E. B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Miller, C. Open-state substructure of single chloride channels from Torpedo electroplax. Phil. Trans. R. Soc. B 299, 401–411 (1982)

    Article  ADS  CAS  Google Scholar 

  10. Pusch, M., Steinmeyer, K. & Jentsch, T. J. Low single channel conductance of the major skeletal muscle chloride channel, ClC-1. Biophys. J. 66, 149–152 (1994)

    Article  CAS  Google Scholar 

  11. Weinreich, F. & Jentsch, T. J. Pores formed by single subunits in mixed dimers of different CLC chloride channels. J. Biol. Chem. 276, 2347–2353 (2001)

    Article  CAS  Google Scholar 

  12. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Shani, M., Goldschleger, R. & Karlish, S. J. Rb+ occlusion in renal (Na+ + K+)-ATPase characterized with a simple manual assay. Biochim. Biophys. Acta 904, 13–21 (1987)

    Article  CAS  Google Scholar 

  14. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002)

    Article  ADS  CAS  Google Scholar 

  15. Hirai, T. et al. Three-dimensional structure of a bacterial oxalate transporter. Nature Struct. Biol. 9, 597–600 (2002)

    CAS  PubMed  Google Scholar 

  16. Huang, Y., Lemieux, M. J., Song, J., Auer, M. & Wang, D. N. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616–620 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Abramson, J. et al. Structure and mechanism of the lactose permease of Escherichia coli. Science 301, 610–615 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Lin, C. W. & Chen, T. Y. Probing the pore of ClC-0 by substituted cysteine accessibility method using methane thiosulfonate reagents. J. Gen. Physiol. 122, 147–159 (2003)

    Article  CAS  Google Scholar 

  19. Chen, M. F. & Chen, T. Y. Side-chain charge effects and conductance determinants in the pore of ClC-0 chloride channels. J. Gen. Physiol. 122, 133–145 (2003)

    Article  CAS  Google Scholar 

  20. Estevez, R., Schroeder, B. C., Accardi, A., Jentsch, T. J. & Pusch, M. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1. Neuron 38, 47–59 (2003)

    Article  CAS  Google Scholar 

  21. Traverso, S., Elia, L. & Pusch, M. Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic inhibitor. J. Gen. Physiol. 122, 295–306 (2003)

    Article  CAS  Google Scholar 

  22. Davidson, A. L. Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. J. Bacteriol. 184, 1225–1233 (2002)

    Article  CAS  Google Scholar 

  23. Baukrowitz, T., Hwang, T.-C., Nairn, A. C. & Gadsby, D. C. Coupling of CFTR Cl- channel gating to an ATP hydrolysis cycle. Neuron 12, 473–482 (1994)

    Article  CAS  Google Scholar 

  24. Artigas, P. & Gadsby, D. C. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc. Natl Acad. Sci. USA 100, 501–505 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Mager, S. et al. Conducting states of a mammalian serotonin transporter. Neuron 12, 845–859 (1994)

    Article  ADS  CAS  Google Scholar 

  26. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P. & Amara, S. G. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Adams, S. V. & DeFelice, L. J. Ionic currents in the human serotonin transporter reveal inconsistencies in the alternating access hypothesis. Biophys. J. 85, 1548–1559 (2003)

    Article  CAS  Google Scholar 

  28. Richard, E. A. & Miller, C. Steady-state coupling of ion-channel conformations to a transmembrane ion gradient. Science 247, 1208–1210 (1990)

    Article  ADS  CAS  Google Scholar 

  29. Chen, T.-Y. & Miller, C. Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel. J. Gen. Physiol. 108, 237–250 (1996)

    Article  CAS  Google Scholar 

  30. Pusch, M., Ludewig, U., Rehfeldt, A. & Jentsch, T. J. Gating of the voltage-dependent chloride channel ClC-0 by the permeant anion. Nature 373, 527–531 (1995)

    Article  ADS  CAS  Google Scholar 

  31. Biwersi, J., Tulk, B. & Verkman, A. S. Long-wavelength chloride-sensitive fluorescent indicators. Anal. Biochem. 219, 139–143 (1994)

    Article  CAS  Google Scholar 

  32. Mitchell, P. & Moyle, J. Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria. Nature 208, 147–151 (1965)

    Article  ADS  CAS  Google Scholar 

  33. Hille, B. Ion Channels of Excitable Membranes (Sinauer, Sunderland, MA, 2001)

    Google Scholar 

  34. Robinson, R. A. & Stokes, R. H. Electrolyte Solutions (Butterworths, London, 1965)

    Google Scholar 

  35. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 27–28, 33–38 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Williams, B Bablouzion and L. Kolmakova-Partensky for technical assistance, to C. Nimigean for advice throughout the course of this work, and to M. Walden for help with fluorescence measurements. We also thank P. De Weer, F. M. Ashcroft and G. Yellen for critical readings of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Miller.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Accardi, A., Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427, 803–807 (2004). https://doi.org/10.1038/nature02314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02314

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing