Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay

Abstract

The specification of both the germ line and abdomen in Drosophila depends on the localization of oskar messenger RNA to the posterior of the oocyte1,2. This localization requires several trans-acting factors, including Barentsz and the Mago–Y14 heterodimer, which assemble with oskar mRNA into ribonucleoprotein particles (RNPs) and localize with it at the posterior pole3,4,5,6,7. Although Barentsz localization in the germ line depends on Mago–Y14, no direct interaction between these proteins has been detected5. Here, we demonstrate that the translation initiation factor eIF4AIII interacts with Barentsz and is a component of the oskar messenger RNP localization complex. Moreover, eIF4AIII interacts with Mago–Y14 and thus provides a molecular link between Barentsz and the heterodimer. The mammalian Mago (also known as Magoh)–Y14 heterodimer is a component of the exon junction complex8,9,10,11. The exon junction complex is deposited on spliced mRNAs and functions in nonsense-mediated mRNA decay (NMD)9,11,12,13,14, a surveillance mechanism that degrades mRNAs with premature translation-termination codons. We show that both Barentsz and eIF4AIII are essential for NMD in human cells. Thus, we have identified eIF4AIII and Barentsz as components of a conserved protein complex that is essential for mRNA localization in flies and NMD in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of eIF4AIII as a partner of Btz and Mago–Y14.
Figure 2: eIF4AIII functions with Btz in the localization of oskar mRNA.
Figure 3: eIF4AIII localizes to the nucleus and to the posterior pole of the oocyte.
Figure 4: Human eIF4AIII and Btz are required for NMD.

Similar content being viewed by others

References

  1. Ephrussi, A., Dickinson, L. K. & Lehmann, R. Oskar organizes the germ plasm and directs localisation of the posterior determinant nanos. Cell 66, 37–50 (1991)

    Article  CAS  PubMed  Google Scholar 

  2. Kim-Ha, J., Smith, J. L. & Macdonald, P. M. oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23–35 (1991)

    Article  CAS  PubMed  Google Scholar 

  3. Micklem, D. R. et al. The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Curr. Biol. 7, 468–478 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. Newmark, P. A., Mohr, S. E., Gong, L. & Boswell, R. E. mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development 124, 3197–3207 (1997)

    CAS  PubMed  Google Scholar 

  5. van Eeden, F. J., Palacios, I. M., Petronczki, M., Weston, M. J. & St Johnston, D. Barentsz is essential for the posterior localisation of oskar mRNA and colocalizes with it to the posterior pole. J. Cell Biol. 154, 511–523 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mohr, S. E., Dillon, S. T. & Boswell, R. E. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev. 15, 2886–2899 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hachet, O. & Ephrussi, A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11, 1666–1674 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Le Hir, H., Gatfield, D., Braun, I. C., Forler, D. & Izaurralde, E. The protein Mago provides a link between splicing and mRNA localisation. EMBO Rep. 2, 1119–1124 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M. J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kataoka, N., Diem, M. D., Kim, V. N., Yong, J. & Dreyfuss, G. Magoh, a human homolog of Drosophila Mago Nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J. 20, 6424–6433 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, V. N. et al. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO J. 20, 2062–2068 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gehring, N. H., Neu-Yilik, G., Schell, T., Hentze, M. W. & Kulozik, A. E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nature Struct. Biol. 10, 433–439 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Lykke-Andersen, J., Shu, M. D. & Steitz, J. A. Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Grosshans, J., Schnorrer, F. & Nusslein-Volhard, C. Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech. Dev. 81, 127–138 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. Weinstein, D. C., Honore, E. & Hemmati-Brivanlou, A. Epidermal induction and inhibition of neural fate by translation initiation factor 4AIII. Development 124, 4235–4242 (1997)

    CAS  PubMed  Google Scholar 

  17. Li, Q. et al. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19, 7336–7346 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tanner, N. K., Cordin, O., Banroques, J., Doere, M. & Linder, P. The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11, 127–138 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Baker, B. S., Hoff, G., Kaufman, T. C., Wolfner, M. F. & Hazelrigg, T. The doublesex locus of Drosophila melanogaster and its flanking regions: a cytogenetic analysis. Genetics 127, 125–138 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. St Johnston, D., Beuchle, D. & Nusslein-Volhard, C. Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51–63 (1991)

    Article  CAS  PubMed  Google Scholar 

  21. Smith, R. Screens to Find Novel Genes Involved in Pole Plasm Formation in Drosophila melanogaster. PhD Thesis, Cambridge Univ. (1998)

    Google Scholar 

  22. Macchi, P. et al. Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J. Neurosci. 23, 5778–5788 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thermann, R. et al. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J. 17, 3484–3494 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mendell, J. T., ap Rhys, C. M. & Dietz, H. C. Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419–422 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. Gatfield, D., Unterholzner, L., Ciccarelli, F. D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960–3970 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan, C. C. et al. eIF4A3 is a novel component of the exon junction complex. RNA 10, 200–209 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollenberg, S. M., Sternglanz, R., Cheng, P. F. & Weintraub, H. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15, 3813–3822 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chou, T. B. & Perrimon, N. The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge G. Dreyfuss, A. Ephrussi, M. Moore and N. Sonenberg for sharing unpublished observations. We thank D. Micklem for the gift of GFP–Mago flies; M. Hentze, A. Kulozik and M. Kiebler for plasmids and antibodies; R. Cantera for help in collecting confocal images; and P. Lawrence for critical reading of the manuscript. I.M.P. was supported by the Royal Society Dorothy Hodgkin Fellowship. D.S.J. was supported by a Wellcome Trust Principal Research Fellowship. D.G. and E.I. are supported by the European Molecular Biology Organization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel St Johnston or Elisa Izaurralde.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Sequence of the conserved motifs of the DEAD-box protein family in Drosophila eIF4AIII and schematic representation of the eIF4AIII (CG7483) genomic region. (PDF 337 kb)

Supplementary Figure 2

Localisation of Staufen protein in btz1 mutant ovaries with or without a copy of the eIF4AIII19 allele. (PDF 921 kb)

Supplementary Figure 3

Conservation of the subcellular localisation of Mago:Y14, eIF4AIII and Barentsz in Drosophila egg chambers and in human HeLa cells. (PDF 814 kb)

Supplementary Figure 4

Specificity and efficiency of the siRNAs in HeLa cells. (PDF 402 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palacios, I., Gatfield, D., St Johnston, D. et al. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004). https://doi.org/10.1038/nature02351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02351

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing