Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes

Abstract

LINE-1 (L1) elements are the most abundant autonomous retrotransposons in the human genome, accounting for about 17% of human DNA. The L1 retrotransposon encodes two proteins, open reading frame (ORF)1 and the ORF2 endonuclease/reverse transcriptase. L1 RNA and ORF2 protein are difficult to detect in mammalian cells, even in the context of overexpression systems. Here we show that inserting L1 sequences on a transcript significantly decreases RNA expression and therefore protein expression. This decreased RNA concentration does not result from major effects on the transcription initiation rate or RNA stability. Rather, the poor L1 expression is primarily due to inadequate transcriptional elongation. Because L1 is an abundant and broadly distributed mobile element, the inhibition of transcriptional elongation by L1 might profoundly affect expression of endogenous human genes. We propose a model in which L1 affects gene expression genome-wide by acting as a ‘molecular rheostat’ of target genes. Bioinformatic data are consistent with the hypothesis that L1 can serve as an evolutionary fine-tuner of the human transcriptome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ORF2 sequence decreases expression.
Figure 2: Decreased RNA amounts are not due to ORF2 protein.
Figure 3: Decrease in L1 expression is dependent on length.
Figure 4: Analysis of ORF2 stability and transcription.
Figure 5: Bioinformatic analysis of L1 content in genes.
Figure 6: Models for L1-mediated modulation of gene expression/structure.

Similar content being viewed by others

References

  1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Swergold, G. D. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10, 6718–6729 (1990)

    Article  CAS  Google Scholar 

  3. Feng, Q., Moran, J. V., Kazazian, H. H. Jr & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996)

    Article  CAS  Google Scholar 

  4. Moran, J. V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996)

    Article  CAS  Google Scholar 

  5. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 24, 363–367 (2000)

    Article  CAS  Google Scholar 

  6. Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001)

    Article  CAS  Google Scholar 

  7. Kolosha, V. O. & Martin, S. L. In vitro properties of the first ORF protein from mouse LINE-1 support its role in ribonucleoprotein particle formation during retrotransposition. Proc. Natl Acad. Sci. USA 94, 10155–10160 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Martin, S. L. & Bushman, F. D. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21, 467–475 (2001)

    Article  CAS  Google Scholar 

  9. Kolosha, V. O. & Martin, S. L. High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). J. Biol. Chem. 278, 8112–8117 (2003)

    Article  CAS  Google Scholar 

  10. Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nature Genet. 35, 41–48 (2003)

    Article  CAS  Google Scholar 

  11. Luan, D. D., Korman, M. H., Jakubczak, J. L. & Eickbush, T. H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993)

    Article  CAS  Google Scholar 

  12. Cost, G. J., Feng, Q., Jacquier, A. & Boeke, J. D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21, 5899–5910 (2002)

    Article  CAS  Google Scholar 

  13. Boissinot, S., Entezam, A. & Furano, A. V. Selection against deleterious LINE-1-containing loci in the human lineage. Mol. Biol. Evol. 18, 926–935 (2001)

    Article  CAS  Google Scholar 

  14. Szak, S. T. et al. Molecular archeology of L1 insertions in the human genome. Genome Biol 3, research00521–researc005218 (2002)

  15. Mathias, S. L., Scott, A. F., Kazazian, H. H. Jr, Boeke, J. D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991)

    Article  ADS  CAS  Google Scholar 

  16. Clements, A. P. & Singer, M. F. The human LINE-1 reverse transcriptase: effect of deletions outside the common reverse transcriptase domain. Nucleic Acids Res. 26, 528–3535 (31998)

    Google Scholar 

  17. Branciforte, D. & Martin, S. L. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol. Cell. Biol. 14, 2584–2592 (1994)

    Article  CAS  Google Scholar 

  18. Trelogan, S. A. & Martin, S. L. Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. Proc. Natl Acad. Sci. USA 92, 1520–1524 (1995)

    Article  ADS  CAS  Google Scholar 

  19. Perepelitsa-Belancio, V. & Deininger, P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nature Genet. 35, 363–366 (2003)

    Article  CAS  Google Scholar 

  20. Boissinot, S., Chevret, P. & Furano, A. V. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol. 17, 915–928 (2000)

    Article  CAS  Google Scholar 

  21. Gilbert, N., Lutz-Prigge, S. & Moran, J. V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002)

    Article  CAS  Google Scholar 

  22. Symer, D. E. et al. Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110, 327–338 (2002)

    Article  CAS  Google Scholar 

  23. Feng, Q. Mechanism of Human L1 Element Retrotransposition. Thesis, Johns Hopkins Univ. (1996)

    Google Scholar 

  24. Chávez, S. et al. Hpr1 is preferentially required for transcription of either long or G + C-rich DNA sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 21, 7054–7064 (2001)

    Article  Google Scholar 

  25. Han, J. S. & Boeke, J. D. A highly active synthetic mammalian retrotransposon. Nature 429, 314–318 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Cost, G. J. & Boeke, J. D. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37, 18081–18093 (1998)

    Article  CAS  Google Scholar 

  27. Minakami, R. et al. Identification of a cis-element essential for the human L1 transcription and a nuclear factor(s) binding to the element. Nucleic Acids Res. 20, 3139–3145 (1992)

    Article  CAS  Google Scholar 

  28. Tchenio, T., Casella, J. F. & Heidmann, T. Members of the SRY family regulate the human LINE-1 retrotransposons. Nucleic Acids Res. 28, 411–415 (2000)

    Article  CAS  Google Scholar 

  29. Yang, N., Zhang, L., Zhang, Y. & Kazazian, H. H. Jr An important role for RUNX3 in human L1 transcription and retrotransposition. Nucleic Acids Res. 31, 4929–4940 (2003)

    Article  CAS  Google Scholar 

  30. Xu, Q., Nakanishi, T., Sekimizu, K. & Natori, S. Cloning and identification of testis-specific transcription elongation factor S-II. J. Biol. Chem. 269, 3100–3103 (1994)

    CAS  PubMed  Google Scholar 

  31. Miller, T., Williams, K., Johnstone, R. W. & Shilatifard, A. Identification, cloning, expression, and biochemical characterization of the testis-specific RNA polymerase II elongation factor ELL3. J. Biol. Chem. 275, 32052–32056 (2000)

    Article  CAS  Google Scholar 

  32. Schwahn, U. et al. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nature Genet. 19, 327–332 (1998)

    Article  CAS  Google Scholar 

  33. Yajima, I. et al. An L1 element intronic insertion in the black-eyed white (Mitf[mi-bw]) gene: the loss of a single Mitf isoform responsible for the pigmentary defect and inner ear deafness. Hum. Mol. Genet. 8, 1431–1441 (1999)

    Article  CAS  Google Scholar 

  34. Hickey, D. A. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519–531 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bestor, T. H. Sex brings transposons and genomes into conflict. Genetica 107, 289–295 (1999)

    Article  CAS  Google Scholar 

  36. Levis, R. W., Ganesan, R., Houtchens, K., Tolar, L. A. & Sheen, F. M. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75, 1083–1093 (1993)

    Article  CAS  Google Scholar 

  37. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998)

    Article  ADS  CAS  Google Scholar 

  38. Tang, W. et al. Secreted and membrane attractin result from alternative splicing of the human ATRN gene. Proc. Natl Acad. Sci. USA 97, 6025–6030 (2000)

    Article  ADS  CAS  Google Scholar 

  39. Zarudnaya, M. I., Kolomiets, I. M., Potyahaylo, A. L. & Hovorun, D. M. Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res. 31, 1375–1386 (2003)

    Article  CAS  Google Scholar 

  40. Burwinkel, B. & Kilimann, M. W. Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease. J. Mol. Biol. 277, 513–517 (1998)

    Article  CAS  Google Scholar 

  41. Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Jr Exon shuffling by L1 retrotransposition. Science 283, 1530–1534 (1999)

    Article  ADS  CAS  Google Scholar 

  42. Goodier, J. L., Ostertag, E. M. & Kazazian, H. H. Jr Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9, 653–657 (2000)

    Article  CAS  Google Scholar 

  43. Pickeral, O. K., Makalowski, W., Boguski, M. S. & Boeke, J. D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10, 411–415 (2000)

    Article  CAS  Google Scholar 

  44. Okazaki, Y. et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420, 563–573 (2002)

    Article  ADS  Google Scholar 

  45. Yan, H., Yuan, W., Velculescu, V. E., Vogelstein, B. & Kinzler, K. W. Allelic variation in human gene expression. Science 297, 1143 (2002)

    Article  ADS  CAS  Google Scholar 

  46. Lo, H. S. et al. Allelic variation in gene expression is common in the human genome. Genome Res. 13, 1855–1862 (2003)

    Article  CAS  Google Scholar 

  47. Cuello, P., Boyd, D. C., Dye, M. J., Proudfoot, N. J. & Murphy, S. Transcription of the human U2 snRNA genes continues beyond the 3′ box in vivo. EMBO J. 18, 2867–2877 (1999)

    Article  CAS  Google Scholar 

  48. Dieckmann, T., Butcher, S. E., Sassanfar, M., Szostak, J. W. & Feigon, J. Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding. J. Mol. Biol. 273, 467–478 (1997)

    Article  CAS  Google Scholar 

  49. Sassanfar, M. & Szostak, J. W. An RNA motif that binds ATP. Nature 364, 550–553 (1993)

    Article  ADS  CAS  Google Scholar 

  50. Oliver, J. L. et al. Isochore chromosome maps of the human genome. Gene 300, 117–127 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Aizawa, J. Corden, J. Moran, J. Nathans, S.-L. Ooi and D. Valle for helpful discussions and critical reading of the manuscript, S. Wheelan for unpublished bioinformatics data, S. Murphy for providing a detailed nuclear run-on protocol, J. Moran for pY104, H. Kazazian for pTN201, and R. Bandaru for help with statistical analysis. This work was supported by the NIH (J.D.B.) and the Medical Scientist Training Program (J.S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jef D. Boeke.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Methods (DOC 27 kb)

Supplementary Figure Legends (DOC 23 kb)

Supplementary Table S1

The sequence of oligonucleotides used. (PDF 93 kb)

Supplementary Figures S1 to S4

Supplementary Figure S1: The structure of the test expression reporter used is depicted for each lane of each figure in this manuscript; Supplementary Figure S2: Northern blot analysis of total RNA in different cells; Supplementary Figure S3: Protein levels in ORF2 deletion constructs; Supplementary Figure S4: Comparison of GFPlacZ and GFPORF2 RNA half-life by real time RT-PCT. (PDF 2444 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Szak, S. & Boeke, J. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004). https://doi.org/10.1038/nature02536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02536

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing