Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

G1 cell-cycle control and cancer

Abstract

Before replicating DNA during their reproductive cycle, our cells enter a phase called G1 during which they interpret a flood of signals that influence cell division and cell fate. Mistakes in this process lead to cancer. An increasingly complex and coherent view of G1 signalling networks, which coordinate cell growth, proliferation, stress management and survival, is helping to define the roots of malignancies and shows promise for the development of better cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simple and complex cell cycles.
Figure 2: A CDK engine for G1 to S transition and its built-in regulators.
Figure 3: Networks integrating growth, survival and proliferation signals.
Figure 4: Signal integration by means of five transcriptional nodes.

Similar content being viewed by others

References

  1. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Murray, A. W. Recycling the cell cycle: cyclins revisited. Cell 116, 221–234 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Kelly, T. J. & Brown, G. W. Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829–880 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Prasanth, S. G., Mendez, J., Prasanth, K. V. & Stillman, B. Dynamics of pre-replication complex proteins during the cell division cycle. Phil. Trans. R. Soc. Lond. B 359, 7–16 (2004).

    Article  CAS  Google Scholar 

  5. Geng, Y. et al. Cyclin E ablation in the mouse. Cell 114, 431–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet. 35, 25–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Sears, R. C. & Nevins, J. R. Signaling networks that link cell proliferation and cell fate. J. Biol. Chem. 277, 11617–11620 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Stevaux, O. & Dyson, N. J. A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol. 14, 684–691 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Lipinski, M. M. & Jacks, T. The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Sherr, C. J. Principles of tumor suppression. Cell 116, 235–246 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Geng, Y. et al. Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97, 767–777 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kozar K et al. Mouse development and cell proliferation in the absence of d-cyclins. Cell 118, 477–491, (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Malumbres, M. et al., Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493–504, (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Pavletich, N. P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287, 821–828 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Blain, S. W., Scher, H. I., Cordon-Cardo, C. & Koff, A. p27 as a target for cancer therapeutics. Cancer Cell 3, 111–115 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Montagnoli, A. et al. Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev. 13, 1181–1189 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reed, S. I. Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nature Rev. Mol. Cell. Biol. 4, 855–864 (2003).

    Article  ADS  CAS  Google Scholar 

  19. Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCF (Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428, 190–193 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Petronczki, M., Siomos, M. F. & Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Rape, M. & Kirschner, M. W. Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature (in the press).

  23. Hsu, J. Y. et al. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC (Cdh1). Nature Cell Biol. 4, 358–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017–1021 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Pawson, T. Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116, 191–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Schlessinger, J. & Lemmon, M. A. SH2 and PTB domains in tyrosine kinase signaling. Sci. STKE 191, RE12 (2003).

    Google Scholar 

  27. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  28. Coleman, M. L., Marshall, C. J. & Olson, M. F. RAS and RHO GTPases in G1-phase cell-cycle regulation. Nature Rev. Mol. Cell Biol. 5, 355–366 (2004).

    Article  CAS  Google Scholar 

  29. Giancotti, F. G. & Tarone, G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu. Rev. Cell Dev. Biol. 19, 173–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  31. Tran, H., Brunet, A., Griffith, E. C. & Greenberg, M. E. The many forks in FOXO's road. Sci. STKE 172, RE5 (2003).

    Google Scholar 

  32. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nature Rev. Cancer 4, 361–370 (2004).

    Article  CAS  Google Scholar 

  33. Sawyers, C. L. Opportunities and challenges in the development of kinase inhibitor therapy for cancer. Genes Dev. 17, 2998–3010 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Noble, M. E., Endicott, J. A. & Johnson, L. N. Protein kinase inhibitors: insights into drug design from structure. Science 303, 1800–1805 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Arteaga, C. L. & Baselga, J. Tyrosine kinase inhibitors; why does the current process of clinical development not apply to them? Cancer Cell 5, 525–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug. Discov. 3, 391–400 (2004).

    Article  CAS  Google Scholar 

  38. Chiosis, G. L. B., Huezo, H., Solit, D., Basso, A. & Rosen, N. Development of purine-scaffold small molecule inhibitors of Hsp90. Curr. Cancer Drug Targets 3, 371–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Maher, E. A. et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 15, 1311–1333 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib (Iressa®) and erlotinib (Tarceva TM). Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, X. & Wang, X. Cytochrome C-mediated apoptosis. Ann. Rev. Biochem. 73, 87–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Kolesnick, R. & Fuks, Z. Radiation and ceramide-induced apoptosis. Oncogene 22, 5897–5906 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).

    Article  CAS  Google Scholar 

  48. Hu, M. C. et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Barradas, M., Monjas, A., Diaz-Meco, M. T., Serrano, M. & Moscat, J. The downregulation of the pro-apoptotic protein Par-4 is critical for Ras-induced survival and tumor progression. EMBO J. 18, 6362–6369 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bjornsti, M. A. & Houghton, P. J. The TOR pathway: a target for cancer therapy. Nature Rev. Cancer 4, 335–348 (2004).

    Article  CAS  Google Scholar 

  52. Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Holland, E. C., Sonenberg, N., Pandolfi, P. P. & Thomas, G. Signaling control of mRNA translation in cancer pathogenesis. Oncogene 23, 3138–3144 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Rajasekhar, V. K. et al. Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol. Cell 12, 889–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Wendel et al. Survival signaling by Akt and eIF4E in oncogenetics and cancer therapy. Nature 428, 332–337 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med. 10, 484–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol. 2, 769–776 (2001).

    Article  CAS  Google Scholar 

  59. Jope, R. S. & Johnson, G. V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Wanzel, M., Herold, S. & Eilers, M. Transcriptional repression by Myc. Trends Cell Biol. 13, 146–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Seoane, J., Le, H. V. & Massagué, J. Myc suppression of the p21 (Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nature Rev. Cancer 2, 764–776 (2002).

    Article  CAS  Google Scholar 

  64. Siegel, P. M. & Massagué, J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nature Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  65. Shi, Y. & Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massagué, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Accili, D. & Arden, K. C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor beta in carcinogenesis. Proc. Natl Acad. Sci. USA 100, 8621–8623 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Michael, D. & Oren, M. The p53 and Mdm2 families in cancer. Curr. Opin. Genet. Dev. 12, 53–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaccmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002).

    Article  CAS  Google Scholar 

  73. Flores, E. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Senoo, M., Manis, J. P., Alt, F. W. & McKeon, F. p63 and p73 are not required for the development and p53-dependent apoptosis of T cells. Cancer Cell 6, 85–89 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Brooks, C. L. & Gu, W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr. Opin. Cell Biol. 15, 164–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Lowe, S. W. & Sherr, C. J. Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Motta, M. C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Arden, K. C. FoxO: linking new signaling pathways. Mol. Cell 14, 416–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. So, C. W. & Cleary, M. L. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol. Cell. Biol. 22, 6542–6552 (2003).

    Article  CAS  Google Scholar 

  81. Ruzinova, M. B. & Benezra, R. Id proteins in development, cell cycle and cancer. Trends Cell Biol. 13, 410–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Jacobs, J. J. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Owens, D. M. & Watt, F. M. Contribution of stem cells and differentiated cells to epidermal tumours. Nature Rev. Cancer 3, 444–451 (2003).

    Article  CAS  Google Scholar 

  87. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. van de Wetering, M. et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Oliver, T. G. et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc. Natl Acad. Sci. USA 100, 7331–7336 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kerney, A. M., Cole, H. D. & Rowitch, D. H. Nmyc upregulation by sonic hedgehog signalling promotes proliferation in developing cerebellar granule neurone precursors. Development 130, 15–28 (2003).

    Article  CAS  Google Scholar 

  94. Grady, W. M. & Markowitz, S. D. Genetic and epigenetic alterations in colon cancer. Annu. Rev. Genomics Hum. Genet. 3, 101–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Karhadkar, S. S. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks E. Holland, N. Rosen and D. Solit for helpful discussions.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massagué, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004). https://doi.org/10.1038/nature03094

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03094

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing