Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accurate multiplex gene synthesis from programmable DNA microchips

Abstract

Testing the many hypotheses from genomics and systems biology experiments demands accurate and cost-effective gene and genome synthesis. Here we describe a microchip-based technology for multiplex gene synthesis. Pools of thousands of ‘construction’ oligonucleotides and tagged complementary ‘selection’ oligonucleotides are synthesized on photo-programmable microfluidic chips1, released, amplified and selected by hybridization to reduce synthesis errors ninefold. A one-step polymerase assembly multiplexing reaction assembles these into multiple genes. This technology enabled us to synthesize all 21 genes that encode the proteins of the Escherichia coli 30S ribosomal subunit, and to optimize their translation efficiency in vitro through alteration of codon bias. This is a significant step towards the synthesis of ribosomes in vitro and should have utility for synthetic biology in general.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A flow chart for the design, synthesis and analysis of multiple genes in pools.
Figure 2: Preparation of free oligonucleotides from a custom microarray.
Figure 3: Hybridization selection of microchip-synthesized oligonucleotides.
Figure 4: Synthetic gene constructs and their translation products.

Similar content being viewed by others

References

  1. Zhou, X. et al. Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences. Nucleic Acids Res. 32, 5409–5417 (2004)

    Article  CAS  Google Scholar 

  2. Fodor, S. P. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991)

    Article  ADS  CAS  Google Scholar 

  3. Gao, X. et al. Flexible DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. 29, 4744–4750 (2001)

    Article  CAS  Google Scholar 

  4. Cello, J., Paul, A. V. & Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Smith, H. O., Hutchison, C. A. III, Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Stemmer, W. P., Crameri, A., Ha, K. D., Brennan, T. M. & Heyneker, H. L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995)

    Article  CAS  Google Scholar 

  7. Eason, R. G. et al. Characterization of synthetic DNA bar codes in Saccharomyces cerevisiae gene-deletion strains. Proc. Natl Acad. Sci. USA 101, 11046–11051 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Forster, A. C. & Church, G. M. A synthetic biology project. Nature (submitted)

  9. Culver, G. M. & Noller, H. F. Efficient reconstitution of functional Escherichia coli 30S ribosomal subunits from a complete set of recombinant small subunit ribosomal proteins. RNA 5, 832–843 (1999)

    Article  CAS  Google Scholar 

  10. Iost, I., Guillerez, J. & Dreyfus, M. Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. J. Bacteriol. 174, 619–622 (1992)

    Article  CAS  Google Scholar 

  11. Iost, I. & Dreyfus, M. mRNAs can be stabilized by DEAD-box proteins. Nature 372, 193–196 (1994)

    Article  ADS  CAS  Google Scholar 

  12. Carr, P. A., Park, J. S., Lee, Y.-J., Yu, T., Zhang, S. & Jacobson, J. M. Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res. (in the press)

  13. Smith, J. & Modrich, P. Removal of polymerase-produced mutant sequences from PCR products. Proc. Natl Acad. Sci. USA 94, 6847–6850 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Shendure, J., Mitra, R., Varma, C. & Church, G. M. Advanced sequencing technologies: methods and goals. Nature Rev. Genet. 5, 335–344 (2004)

    Article  CAS  Google Scholar 

  15. Mullis, K. et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. LI, 263–273 (1986)

    Article  Google Scholar 

  16. Dillon, P. J. & Rosen, C. A. A rapid method for the construction of synthetic genes using the polymerase chain reaction. BioTechniques 9, 298–300 (1990)

    CAS  PubMed  Google Scholar 

  17. Liu, D., Park, S. H., Reif, J. H. & LaBean, T. H. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl Acad. Sci. USA 101, 717–722 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Jaffe, J. D., Berg, H. C. & Church, G. M. Proteogenomic mapping reveals genomic structure and novel proteins undetected by computational algorithms. Proteomics 4, 59–77 (2004)

    Article  CAS  Google Scholar 

  19. Breslauer, K. J., Frank, R., Blöcker, H. & Marky, L. A. Predicting DNA duplex stability from the base sequence. Proc. Natl Acad. Sci. USA 83, 3746–3750 (1986)

    Article  ADS  CAS  Google Scholar 

  20. Richmond, K. E. et al. Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res. 32, 5011–5018 (2004)

    Article  CAS  Google Scholar 

  21. Espelund, M., Stacy, R. A. & Jakobsen, K. S. A simple method for generating single-stranded DNA probes labeled to high activities. Nucleic Acids Res. 18, 6157–6158 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DARPA BioComp and DOE GTL provided support for J.T., H.G. and G.C. We thank G. Culver, T. Wu, T. Forster, P. Carr, J. Jacobson and other members of the synthetic biology community for advice; N. Novikov for technical assistance, and E. Nuwaysir and T. Albert for help in designing the Nimblegen arrays. J.T. was supported by a LSRF fellowship. X.Z., E.G. and X.G. thank the NIH, DARPA and the R.A. Welch Foundation for grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Church.

Ethics declarations

Competing interests

X.Z., E.G. and X.G. have potentially competing financial interests in Atactic Technologies. G.C. and J.T. have potentially competing financial interests in SynBio Corp.

Supplementary information

Supplementary Table 1 and 2

Table 1: Sequences of the construction oligonucleotides, selection oligonucleotides, oligonucleotide PCR-amplification primers, and gene-end primers; Table 2: Primers for adding His-tags, linkers to construct overlaps, 3 secondary assembly primers, and 1 final PCR assembly flanking primers. (DOC 136 kb)

Supplementary Methods

Description of methods for making the synthetic 14,593-nt operon of 21 codon-modified E.coli 30S ribosomal genes and lists of oligonucleotides used. (DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, J., Gong, H., Sheng, N. et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432, 1050–1054 (2004). https://doi.org/10.1038/nature03151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03151

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing