Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recognition of bacterial glycosphingolipids by natural killer T cells

Abstract

Natural killer T (NKT) cells constitute a highly conserved T lymphocyte subpopulation that has the potential to regulate many types of immune responses through the rapid secretion of cytokines1,2. NKT cells recognize glycolipids presented by CD1d, a class I-like antigen-presenting molecule. They have an invariant T-cell antigen receptor (TCR) α-chain, but whether this invariant TCR recognizes microbial antigens is still controversial. Here we show that most mouse and human NKT cells recognize glycosphingolipids from Sphingomonas, Gram-negative bacteria that do not contain lipopolysaccharide3,4,5. NKT cells are activated in vivo after exposure to these bacterial antigens or bacteria, and mice that lack NKT cells have a marked defect in the clearance of Sphingomonas from the liver. These data suggest that NKT cells are T lymphocytes that provide an innate-type immune response to certain microorganisms through recognition by their antigen receptor, and that they might be useful in providing protection from bacteria that cannot be detected by pattern recognition receptors such as Toll-like receptor 4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vα14i NKT-cell hybridomas respond to Sphingomonas glycolipids.
Figure 2: Most Vα14i NKT cells bind GSL-1/CD1d tetramers.
Figure 3: In vitro response of non-transformed Vα14i NKT cells to Sphingomonas antigens.
Figure 4: In vivo response of Vα14i NKT cells to bacterial antigens and bacteria.
Figure 5: Human Vα24i NKT cells respond to synthetic Sphingomonas glycolipids.

Similar content being viewed by others

References

  1. Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. & Wakao, H. The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol. 21, 483–513 (2003)

    Article  CAS  Google Scholar 

  2. Brigl, M. & Brenner, M. B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817–890 (2004)

    Article  CAS  Google Scholar 

  3. Kawahara, K. et al. Chemical structure of glycosphingolipids isolated from Sphingomonas paucimobilis. FEBS Lett. 292, 107–110 (1991)

    Article  CAS  Google Scholar 

  4. Kawahara, K., Moll, H., Knirel, Y. A., Seydel, U. & Zahringer, U. Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur. J. Biochem. 267, 1837–1846 (2000)

    Article  CAS  Google Scholar 

  5. Kawahara, K., Kubota, M., Sato, N., Tsuge, K. & Seto, Y. Occurrence of an alpha-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii. FEMS Microbiol. Lett. 214, 289–294 (2002)

    CAS  PubMed  Google Scholar 

  6. Kobayashi, E., Motoki, K., Uchida, T., Fukushima, H. & Koezuka, Y. KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res. 7, 529–534 (1995)

    CAS  PubMed  Google Scholar 

  7. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998)

    Article  CAS  Google Scholar 

  9. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Neef, A., Witzenberger, R. & Kampfer, P. Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J. Ind. Microbiol. Biotechnol. 23, 261–267 (1999)

    Article  CAS  Google Scholar 

  11. Sidobre, S. et al. The T cell antigen receptor expressed by Vα14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proc. Natl Acad. Sci. USA 101, 12254–12259 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Matsuda, J. L. et al. Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor β repertoire and small clone size. Proc. Natl Acad. Sci. USA 98, 12636–12641 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Wu, D. Y., Segal, N. H., Sidobre, S., Kronenberg, M. & Chapman, P. B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173–181 (2003)

    Article  CAS  Google Scholar 

  14. Schumann, J., Voyle, R. B., Wei, B. Y. & MacDonald, H. R. Cutting edge: influence of the TCR V β domain on the avidity of CD1d:α-galactosylceramide binding by invariant Vα14 NKT cells. J. Immunol. 170, 5815–5819 (2003)

    Article  Google Scholar 

  15. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14- Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998)

    Article  CAS  Google Scholar 

  16. Fujii, S., Shimizu, K., Kronenberg, M. & Steinman, R. M. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nature Immunol. 3, 867–874 (2002)

    Article  CAS  Google Scholar 

  17. Brossay, L. et al. Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells. J. Immunol. 161, 5124–5128 (1998)

    CAS  PubMed  Google Scholar 

  18. Vincent, M. S., Gumperz, J. E. & Brenner, M. B. Understanding the function of CD1-restricted T cells. Nature Immunol. 4, 517–523 (2003)

    Article  CAS  Google Scholar 

  19. Skold, M. & Behar, S. M. Role of CD1d-restricted NKT cells in microbial immunity. Infect. Immun. 71, 5447–5455 (2003)

    Article  Google Scholar 

  20. Mempel, M. et al. Natural killer T cells restricted by the monomorphic MHC class 1b CD1d1 molecules behave like inflammatory cells. J. Immunol. 168, 365–371 (2002)

    Article  CAS  Google Scholar 

  21. Brigl, M., Bry, L., Kent, S. C., Gumperz, J. E. & Brenner, M. B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nature Immunol. 4, 1230–1237 (2003)

    Article  CAS  Google Scholar 

  22. Fischer, K. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl Acad. Sci. USA 101, 10685–10690 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Amprey, J. L. et al. A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med. 200, 895–904 (2004)

    Article  CAS  Google Scholar 

  24. Park, S. H., Benlagha, K., Lee, D., Balish, E. & Bendelac, A. Unaltered phenotype, tissue distribution and function of Vα14+ NKT cells in germ-free mice. Eur. J. Immunol. 30, 620–625 (2000)

    Article  CAS  Google Scholar 

  25. Gonzalez-Aseguinolaza, G. et al. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 195, 617–624 (2002)

    Article  CAS  Google Scholar 

  26. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R. M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003)

    Article  CAS  Google Scholar 

  27. Cheroutre, H. Starting at the beginning: new perspectives on the biology of mucosal T cells. Annu. Rev. Immunol. 22, 217–246 (2004)

    Article  CAS  Google Scholar 

  28. Shaw, P. X., Goodyear, C. S., Chang, M. K., Witztum, J. L. & Silverman, G. J. The autoreactivity of anti-phosphorylcholine antibodies for atherosclerosis-associated neo-antigens and apoptotic cells. J. Immunol. 170, 6151–6157 (2003)

    Article  CAS  Google Scholar 

  29. Matsuda, J. L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000)

    Article  CAS  Google Scholar 

  30. Matsuda, J. L. et al. Mouse Vα14i natural killer T cells are resistant to cytokine polarization in vivo. Proc. Natl Acad. Sci. USA 100, 8395–8400 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. J. L. Hammond for critical reading of the manuscript, and S. Sidobre, L. Sidobre, K. J. L. Hammond and A. Khurana for mCD1d protein. This work was supported by grants from the National Institutes of Health (to M.K., to C-H.W. and to M.T.). Y.K. was supported in part by the Yamada Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Kronenberg.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

This figure shows in vivo activation of V□14i NKT cells after injection of DCs pulsed with GSL-1'sA or S. yanoikuyae. (PDF 39 kb)

Supplementary Figure S2

This figure shows GSL-1'sA does not cause TNF-α production by DCs. (PDF 28 kb)

Supplementary Figure S3

This figure shows TLR4 independent activation of Vα14i NKT cells. (PDF 30 kb)

Supplementary Figure S4

This figure shows TLR independent IFN-γ production by Vα14i NKT cells. (PDF 42 kb)

Supplementary Figure S5

This figure shows IL-12 independent IFN-γ production by Vα14i NKT cells. (PDF 47 kb)

Supplementary Figure S6

This figure shows IL-12 independent IL-4 production by Vα14i NKT cells. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinjo, Y., Wu, D., Kim, G. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005). https://doi.org/10.1038/nature03407

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03407

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing