Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Lyme disease agent exploits a tick protein to infect the mammalian host

Abstract

The Lyme disease agent, Borrelia burgdorferi, is maintained in a tick–mouse cycle1,2. Here we show that B. burgdorferi usurps a tick salivary protein, Salp15 (ref. 3), to facilitate the infection of mice. The level of salp15 expression was selectively enhanced by the presence of B. burgdorferi in Ixodes scapularis, first indicating that spirochaetes might use Salp15 during transmission. Salp15 was then shown to adhere to the spirochaete, both in vitro and in vivo, and specifically interacted with B. burgdorferi outer surface protein C. The binding of Salp15 protected B. burgdorferi from antibody-mediated killing in vitro and provided spirochaetes with a marked advantage when they were inoculated into naive mice or animals previously infected with B. burgdorferi. Moreover, RNA interference-mediated repression of salp15 in I. scapularis drastically reduced the capacity of tick-borne spirochaetes to infect mice. These results show the capacity of a pathogen to use a secreted arthropod protein to help it colonize the mammalian host.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Salp15 levels are specifically enhanced in Borrelia burgdorferi-infected tick salivary glands.
Figure 2: Salp15 interacts with outer surface protein (Osp)C of Borrelia burgdorferi.
Figure 3: Salp15 markedly enhances the Borrelia burgdorferi load in the murine host.
Figure 4: Gene silencing of salp15 expression by RNA interference.

Similar content being viewed by others

References

  1. Burgdorfer, W. et al. Lyme disease—a tick-borne spirochetosis? Science 216, 1317–1319 (1982)

    Article  ADS  CAS  Google Scholar 

  2. Ribeiro, J. M., Mather, T. N., Piesman, J. & Spielman, A. Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J. Med. Entomol. 24, 201–205 (1987)

    Article  CAS  Google Scholar 

  3. Anguita, J. et al. Salp15, an Ixodes scapularis salivary protein, inhibits CD4+ T cell activation. Immunity 16, 849–859 (2002)

    Article  CAS  Google Scholar 

  4. Steere, A. C., Coburn, J. & Glickstein, L. The emergence of Lyme disease. J. Clin. Invest. 113, 1093–1101 (2004)

    Article  CAS  Google Scholar 

  5. Schwan, T. G. & Piesman, J. Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J. Clin. Microbiol. 38, 382–388 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pal, U. et al. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J. Clin. Invest. 113, 220–230 (2004)

    Article  CAS  Google Scholar 

  7. Grimm, D. et al. Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc. Natl Acad. Sci. USA 101, 3142–3147 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Wikel, S. K. Host immunity to ticks. Annu. Rev. Entomol. 41, 1–22 (1996)

    Article  CAS  Google Scholar 

  9. Sauer, J. R., McSwain, J. L., Bowman, A. S. & Essenberg, R. C. Tick salivary gland physiology. Annu. Rev. Entomol. 40, 245–267 (1995)

    Article  CAS  Google Scholar 

  10. Ribeiro, J. M. & Francischetti, I. M. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol. 48, 73–88 (2003)

    Article  CAS  Google Scholar 

  11. Das, S. et al. Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J. Infect. Dis. 184, 1056–1064 (2001)

    Article  CAS  Google Scholar 

  12. Zeidner, N. S., Schneider, B. S., Nuncio, M. S., Gern, L. & Piesman, J. Coinoculation of Borrelia spp. with tick salivary gland lysate enhances spirochete load in mice and is tick species-specific. J. Parasitol. 88, 1276–1278 (2002)

    CAS  PubMed  Google Scholar 

  13. Steere, A. C. & Glickstein, L. Elucidation of Lyme arthritis. Nature Rev. Immunol. 4, 143–152 (2004)

    Article  CAS  Google Scholar 

  14. Wooten, R. M. et al. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J. Immunol. 168, 348–355 (2002)

    Article  CAS  Google Scholar 

  15. McKisic, M. D. & Barthold, S. W. T-cell-independent responses to Borrelia burgdorferi are critical for protective immunity and resolution of Lyme disease. Infect. Immun. 68, 5190–5197 (2000)

    Article  CAS  Google Scholar 

  16. Fikrig, E., Barthold, S. W., Chen, M., Chang, C. H. & Flavell, R. A. Protective antibodies develop, and murine Lyme arthritis regresses, in the absence of MHC class II and CD4 + T cells. J. Immunol. 159, 5682–5686 (1997)

    CAS  PubMed  Google Scholar 

  17. Sadziene, A., Thompson, P. A. & Barbour, A. G. In vitro inhibition of Borrelia burgdorferi growth by antibodies. J. Infect. Dis. 167, 165–172 (1993)

    Article  CAS  Google Scholar 

  18. Bunikis, J. et al. Borrelia burgdorferi infection in a natural population of Peromyscus leucopus mice: a longitudinal study in an area where Lyme borreliosis is highly endemic. J. Infect. Dis. 189, 1515–1523 (2004)

    Article  CAS  Google Scholar 

  19. Brunet, L. R., Sellitto, C., Spielman, A. & Telford, S. R. Antibody response of the mouse reservoir of Borrelia burgdorferi in nature. Infect. Immun. 63, 3030–3036 (1995)

    Article  CAS  Google Scholar 

  20. de Silva, A. M. et al. Immune evasion by tickborne and host-adapted Borrelia burgdorferi. J. Infect. Dis. 177, 395–400 (1998)

    Article  CAS  Google Scholar 

  21. Malawista, S. E., Barthold, S. W. & Persing, D. H. Fate of Borrelia burgdorferi DNA in tissues of infected mice after antibiotic treatment. J. Infect. Dis. 170, 1312–1316 (1994)

    Article  CAS  Google Scholar 

  22. Coleman, J. L. et al. Plasminogen is required for efficient dissemination of Borrelia burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89, 1111–1119 (1997)

    Article  CAS  Google Scholar 

  23. Nagamune, K. et al. Surface sialic acids taken from the host allow trypanosome survival in tsetse fly vectors. J. Exp. Med. 199, 1445–1450 (2004)

    Article  CAS  Google Scholar 

  24. Nazario, S. et al. Prevention of Borrelia burgdorferi transmission in guinea pigs by tick immunity. Am. J. Trop. Med. Hyg. 58, 780–785 (1998)

    Article  CAS  Google Scholar 

  25. Barthold, S. W., Beck, D. S., Hansen, G. M., Terwilliger, G. A. & Moody, K. D. Lyme borreliosis in selected strains and ages of laboratory mice. J. Infect. Dis. 162, 133–138 (1990)

    Article  CAS  Google Scholar 

  26. Piesman, J. Standard system for infecting ticks (Acari: Ixodidae) with the Lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 30, 199–203 (1993)

    Article  CAS  Google Scholar 

  27. Pal, U. et al. Inhibition of Borrelia burgdorferi-tick interactions in vivo by outer surface protein A antibody. J. Immunol. 166, 7398–7403 (2001)

    Article  CAS  Google Scholar 

  28. Narasimhan, S. et al. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc. Natl Acad. Sci. USA 101, 1141–1146 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Beck for help with the in vivo experiments, K. DePonte and N. Marcantonio for assistance with the microinjection and RNA interference experiments, M. Vasil for the maintenance of ticks, and M. Papero and L. Rollend for guidance with the experiments using Peromyscus leucopus. This work was supported by grants from the American Heart Association, National Institutes of Health, and Centers for Disease Control and Prevention. E.F. is the recipient of a Burroughs Wellcome Clinical Scientist Award in Translational Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Fikrig.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Table S1

Peptide sequences obtained through matrix-assisted laser desorption ionization mass spectrometry peptide analysis. (PDF 1263 kb)

Supplementary Table S2

Oligonucleotide primers used for expression studies using RT-PCR and quantitative PCR. (PDF 51 kb)

Supplementary Figure S1

Salp15 injected at a different site from Borrelia burgdorferi did not alter spirochete load in the murine host. (PDF 41 kb)

Supplementary Figure S2

Reduced transmission of B. burgdorferi to Peromyscus leucopus mice by salp15 dsRNA. (PDF 49 kb)

Supplementary Notes

Legends for Supplementary Figures S1 and S2 (PDF 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramamoorthi, N., Narasimhan, S., Pal, U. et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature 436, 573–577 (2005). https://doi.org/10.1038/nature03812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03812

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing