Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural crest origins of the neck and shoulder

Abstract

The neck and shoulder region of vertebrates has undergone a complex evolutionary history. To identify its underlying mechanisms we map the destinations of embryonic neural crest and mesodermal stem cells using Cre-recombinase-mediated transgenesis. The single-cell resolution of this genetic labelling reveals cryptic cell boundaries traversing the seemingly homogeneous skeleton of the neck and shoulders. Within this assembly of bones and muscles we discern a precise code of connectivity that mesenchymal stem cells of both neural crest and mesodermal origin obey as they form muscle scaffolds. The neural crest anchors the head onto the anterior lining of the shoulder girdle, while a Hox-gene-controlled mesoderm links trunk muscles to the posterior neck and shoulder skeleton. The skeleton that we identify as neural crest-derived is specifically affected in human Klippel–Feil syndrome, Sprengel's deformity and Arnold–Chiari I/II malformation, providing insights into their likely aetiology. We identify genes involved in the cellular modularity of the neck and shoulder skeleton and propose a new method for determining skeletal homologies that is based on muscle attachments. This has allowed us to trace the whereabouts of the cleithrum, the major shoulder bone of extinct land vertebrate ancestors, which seems to survive as the scapular spine in living mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conservation of muscle scaffolds and diversity of shoulder ossification patterns.
Figure 2: Genetic lineage labelling of PONC and somitic mesoderm in the neck.
Figure 3: Neural crest and somitic mesodermal origins of the neck.
Figure 4: Dual neural crest and mesodermal origins of the endochondral shoulder girdle.
Figure 5: The dual architecture of the clavicle: cell population boundaries coincide with muscle attachments and not with ossification modes.
Figure 7: Muscle scaffolds in fossils.
Figure 6: Pathological flexibility of PONC differentiation.

Similar content being viewed by others

References

  1. Janvier, P. Early Vertebrates (Oxford Science Publications, Oxford, 1996)

    Google Scholar 

  2. Johanson, Z. Placoderm branchial and hypobranchial muscles and origins in jawed vertebrates. J. Vert. Paleontol. 23, 735–749 (2003)

    Article  Google Scholar 

  3. Motta, P. J. & Wilga, C. D. Environmental Biology of Fishes Vol. 60, 131–156 (Kluwer Academic, Dordrecht, 2001)

    Google Scholar 

  4. LeDouarin, N. & Kalcheim, C. The Neural Crest 2nd edn (Cambridge Univ. Press, Cambridge, 1999)

    Book  Google Scholar 

  5. Edgeworth, F. H. The Cranial Muscles of Vertebrates (Cambridge Univ. Press, Cambridge, 1935)

    Google Scholar 

  6. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Lumsden, A., Sprawson, N. & Graham, A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291 (1991)

    CAS  PubMed  Google Scholar 

  8. Saunders, J. W. J. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108, 363–403 (1948)

    Article  Google Scholar 

  9. Smith, M. M. & Hall, B. K. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol. Rev. 65, 277–373 (1990)

    Article  CAS  Google Scholar 

  10. Smith, M. M. & Hall, B. K. in Evolutionary Biology Vol. 27 (eds Hecht, M. K., MacIntyre, R. J. & Clegg, M. T.) 387–448 (Plenum, New York, 1993)

    Book  Google Scholar 

  11. Couly, G. F., Coltey, P. M. & LeDouarin, N. M. The triple origin of skull in higher vertebrates: a study in quail–chick chimeras. Development 114, 1–15 (1993)

    Google Scholar 

  12. Jiang, X., Iseki, S., Maxson, R. E., Sucov, H. M. & Morriss-Kay, G. M. Tissue origins and interactions in the mammalian skull vault. Dev. Biol. 241, 106–116 (2002)

    Article  CAS  Google Scholar 

  13. Koentges, G. & Lumsden, A. G. S. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242 (1996)

    CAS  Google Scholar 

  14. Huang, R. et al. Contribution of single somites to the skeleton and muscles of the occipital and cervical regions in avian embryos. Anat. Embryol. 202, 375–383 (2000)

    Article  CAS  Google Scholar 

  15. Huang, L. F. et al. Mouse clavicular development: analysis of wild-type and cleidocranial dysplasia mutant mice. Dev. Dyn. 210, 33–40 (1997)

    Article  CAS  Google Scholar 

  16. Hall, B. K. Development of the clavicles in birds and mammals. J. Exp. Zool. 289, 153–161 (2001)

    Article  CAS  Google Scholar 

  17. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. & McMahon, A. P. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8, 1323–1326 (1998)

    Article  CAS  Google Scholar 

  18. Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995)

    CAS  PubMed  Google Scholar 

  19. Clarke, R. A., Catalan, G., Diwan, A. D. & Kearsley, J. H. Heterogeneity in Klippel-Feil syndrome: a new classification. Pediatr Radiol. 28, 967–974 (1998)

    Article  CAS  Google Scholar 

  20. Horwitz, A. E. Congenital elevation of the scapula—Sprengel's deformity. Am. J. Orthop. Surg. 6, 260–311 (1908)

    Google Scholar 

  21. Otto, F. et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771 (1997)

    Article  CAS  Google Scholar 

  22. Graham, D. I. & Lantos, P. L. Greenfield's Neuropathology 7th edn (Oxford Univ. Press, London, 2002)

    Google Scholar 

  23. Kjaer, I. & Niebuhr, E. Studies of the cranial base in 23 patients with cri-du-chat syndrome suggest a cranial developmental field involved in the condition. Am. J. Med. Genet. 82, 6–14 (1999)

    Article  CAS  Google Scholar 

  24. Huang, R., Zhi, Q., Patel, K., Wilting, J. & Christ, B. Dual origin and segmental organisation of the avian scapula. Development 127, 3789–3794 (2000)

    CAS  PubMed  Google Scholar 

  25. Alvares, L. E. et al. Intrinsic, Hox-dependent cues determine the fate of skeletal muscle precursors. Dev. Cell 5, 379–390 (2003)

    Article  CAS  Google Scholar 

  26. Schweitzer, R. et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development 128, 3855–3866 (2001)

    CAS  PubMed  Google Scholar 

  27. Baylies, M. K. et al. Myogenesis: a view from Drosophila. Cell 93, 921–927 (1998)

    Article  CAS  Google Scholar 

  28. Takio, Y. et al. Lamprey Hox genes and the evolution of jaws. Nature 429, 262–263 (2004)

    Article  CAS  Google Scholar 

  29. Barrow, J. R. & Capecchi, M. R. Compensatory defects associated with mutations in Hoxa1 restore normal palatogenesis to Hoxa2 mutants. Development 126, 5011–5026 (1999)

    CAS  PubMed  Google Scholar 

  30. Smith, A. et al. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570 (1997)

    Article  CAS  Google Scholar 

  31. Selleri, L. et al. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development 128, 3543–3557 (2001)

    CAS  PubMed  Google Scholar 

  32. Dietrich, S. & Gruss, P. Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev. Biol. 167, 529–548 (1995)

    Article  CAS  Google Scholar 

  33. Peters, H. et al. Pax1 and Pax9 synergistically regulate vertebral column development. Development 126, 5399–5408 (1999)

    CAS  PubMed  Google Scholar 

  34. Prols, F. et al. The role of Emx2 during scapula formation. Dev. Biol. 275, 315–324 (2004)

    Article  CAS  Google Scholar 

  35. Jarvik, E. Basic Structure and Evolution of Vertebrates Vol. 1 (Academic, London, 1980)

    Google Scholar 

  36. Shearman, R. M. Growth of the pectoral girdle of the Leopard Frog Rana pipiens (Anura: Ranidae). J. Morphol. 264, 94–104 (2005)

    Article  Google Scholar 

  37. Schoch, R. R. Comparative osteology of Mastodonsaurus giganteus (Jaeger, 1828) from the Middle Triassic (Lettenkeuper: Longobardian) of Germany (Baden-Württemberg, Bayern, Thüringen). Stuttg. Beitr. Naturk. B 278, 1–175 (1999)

    Google Scholar 

  38. Sumida, S. S. in Amniote Origins (eds Sumida, S. S. & Martin, K. L. M.) 353–398 (Academic, San Diego, 1997)

    Book  Google Scholar 

  39. Lebedev, O. A. in The Second Gross Symposium ‘Advances in Palaeoichthyology’ (ed. Luksevics, E.) 79–98 (Acta Universitatis Latviensis 679, 2005).

  40. Clack, J. A. & Finney, S. M. Pederpes finneyae, an articulated tetrapod from the Tournaisian of Western Scotland. J. Syst. Palaeont. 2, 311–346 (2005)

    Article  Google Scholar 

  41. Reisz, R. R., Berman, D. S. & Scott, D. The anatomy and relationships of the Lower Permian reptile Araeoscelis. J. Vertebr. Paleontol. 4, 57–67 (1984)

    Article  Google Scholar 

  42. Jaekel, O. Die Wirbeltierfunde aus dem Keuper von Halberstadt. Paläont. Z. 2, 88–214 (1915–16)

    Article  Google Scholar 

  43. Joyce, W. The presence of cleithra in the primitive turtle Kayentachelys aprix. J. Vert. Paleontol.. 23 (suppl.), 66A (2003)

    Google Scholar 

  44. Ferguson, C. A. & Graham, A. Redefining the head–trunk interface for the neural crest. Dev. Biol. 269, 70–80 (2004)

    Article  CAS  Google Scholar 

  45. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  Google Scholar 

  46. Mao, X. et al. Activation of EGFP expression by Cre-mediated excision in a new ROSA26 reporter mouse strain. Blood 97, 324–326 (2001)

    Article  CAS  Google Scholar 

  47. Condie, B. G. & Capecchi, M. R. Mice with targeted disruptions in the paralogous genes Hoxa-3 and Hoxd-3 reveal synergistic interactions. Nature 370, 304–307 (1994)

    Article  ADS  CAS  Google Scholar 

  48. Zhang, F. et al. Elements both 5′ and 3′ to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neuroectoderm. Mech. Dev. 67, 49–58 (1997)

    Article  CAS  Google Scholar 

  49. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl Acad. Sci. USA 98, 9209–9214 (2001)

    Article  ADS  CAS  Google Scholar 

  50. Winterbottom, R. A descriptive synonymy of the striated muscles of the teleostei. Proc. Acad. Nat. Sci. Phila. 125, 225–317 (1974)

    Google Scholar 

Download references

Acknowledgements

We thank A. Lumsden for help with a complex manuscript; P. Soriano and S. Orkin for providing Cre reporters; and A. West, G. Felsenfeld and J. Green for advice on insulators and plasmids. This work was funded by the BBSRC (G.K., P.E.A.), the Wellcome Trust (G.K., W.D.R.), the MRC UK (W.D.R.), the Swedish Research Council (P.E.A.), the NIH (A.P.M.) and WIBR-UCL (G.K.). G.K. and T.M. were long-term postdoctoral fellows of HFSPO. G.K. thanks S. Moncada for support in establishing a new laboratory.Author Contributions T.M. and P.E.A. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgy Koentges.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

This figure details mouse mutant neck phenotypes. (PDF 147 kb)

Supplementary Methods S1

This file contains Supplementary Methods and analysis. (PDF 343 kb)

Supplemental Methods S2

New methodology for determining neck/shoulder homologies. Also includes additional references. (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuoka, T., Ahlberg, P., Kessaris, N. et al. Neural crest origins of the neck and shoulder. Nature 436, 347–355 (2005). https://doi.org/10.1038/nature03837

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03837

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing