Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA interference is an antiviral defence mechanism in Caenorhabditis elegans

Abstract

RNA interference (RNAi) is an evolutionarily conserved sequence-specific post-transcriptional gene silencing mechanism that is well defined genetically in Caenorhabditis elegans1,2,3,4. RNAi has been postulated to function as an adaptive antiviral immune mechanism in the worm, but there is no experimental evidence for this. Part of the limitation is that there are no known natural viral pathogens of C. elegans. Here we describe an infection model in C. elegans using the mammalian pathogen vesicular stomatitis virus (VSV) to study the role of RNAi in antiviral immunity. VSV infection is potentiated in cells derived from RNAi-defective worm mutants (rde-1; rde-4), leading to the production of infectious progeny virus, and is inhibited in mutants with an enhanced RNAi response (rrf-3; eri-1). Because the RNAi response occurs in the absence of exogenously added VSV small interfering RNAs, these results show that RNAi is activated during VSV infection and that RNAi is a genuine antiviral immune defence mechanism in the worm.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VSV infection of C. elegans cells in culture.
Figure 2: Increased infection of RNAi-deficient mutants.
Figure 3: Increased resistance of RNAi-hypersensitive mutants to VSV infection.
Figure 4: Virus-specific siRNAs in infected N2 cells.

Similar content being viewed by others

References

  1. Grishok, A. & Mello, C. C. RNAi (nematodes: Caenorhabditis elegans). Adv. Genet. 46, 339–360 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Tijsterman, M. & Plasterk, R. H. Dicers at RISC; the mechanism of RNAi. Cell 117, 1–3 (2004)

    Article  CAS  PubMed  Google Scholar 

  4. Denli, A. M. & Hannon, G. J. RNAi: an ever-growing puzzle. Trends Biochem. Sci. 28, 196–201 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Letchworth, G. J., Rodriguez, L. L. & Del cbarrera, J. Vesicular stomatitis. Vet. J. 157, 239–260 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Rose, J. K. & Whitt, M. A. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1221–1244 (Lippincott Williams & Wilkins, Philadelphia, 2004)

    Google Scholar 

  7. Schnell, M. J., Buonocore, L., Kretzschmar, E., Johnson, E. & Rose, J. K. Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc. Natl Acad. Sci. USA 93, 11359–11365 (1996)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts, A. et al. Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J. Virol. 72, 4704–4711 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Boritz, E., Gerlach, J., Johnson, J. E. & Rose, J. K. Replication-competent rhabdoviruses with human immunodeficiency virus type 1 coats and green fluorescent protein: entry by a pH-independent pathway. J. Virol. 73, 6937–6945 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Takada, A. et al. A system for functional analysis of Ebola virus glycoprotein. Proc. Natl Acad. Sci. USA 94, 14764–14769 (1997)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Tijsterman, M., May, R. C., Simmer, F., Okihara, K. L. & Plasterk, R. H. Genes required for systemic RNA interference in Caenorhabditis elegans. Curr. Biol. 14, 111–116 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Tabara, H., Yigit, E., Siomi, H. & Mello, C. C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861–871 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317–1319 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645–649 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Gitlin, L., Karelsky, S. & Andino, R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430–434 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Ge, Q. et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl Acad. Sci. USA 100, 2718–2723 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu, W. Y., Myers, C. P., Kilzer, J. M., Pfaff, S. L. & Bushman, F. D. Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol. 12, 1301–1311 (2002)

    Article  CAS  PubMed  Google Scholar 

  19. Li, W. X. & Ding, S. W. Viral suppressors of RNA silencing. Curr. Opin. Biotechnol. 12, 150–154 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Vance, V. & Vaucheret, H. RNA silencing in plants—defense and counterdefense. Science 292, 2277–2280 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet. 17, 449–459 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Li, H., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Adelman, Z. N. et al. RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J. Virol. 76, 12925–12933 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bennasser, Y., Le, S. Y., Benkirane, M. & Jeang, K. T. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22, 607–619 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. Roth, B. M., Pruss, G. J. & Vance, V. B. Plant viral suppressors of RNA silencing. Virus Res. 102, 97–108 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Li, W. X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl Acad. Sci. USA 101, 1350–1355 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Christensen, M. et al. A primary culture system for functional analysis of C. elegans neurons and muscle cells. Neuron 33, 503–514 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Stillman, E. A., Rose, J. K. & Whitt, M. A. Replication and amplification of novel vesicular stomatitis virus minigenomes encoding viral structural proteins. J. Virol. 69, 2946–2953 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Center for most of the strains used in this study; M. Kaufmann for suggestions; and K. Mitchell for technical assistance in the initial phases of this study. This work was funded in part by UAMS Foundation research funds (M.C.), from the BRIN Program of the National Center for Research Resources (S.C.M. and M.C.), and startup funds (K.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie Chow or Khaled Machaca.

Ethics declarations

Competing interests

M.A.W. is also employed at, and has financial interests in, Gtx. Inc., which holds an exclusive licence for recombinant VSV technology from the University of Tennessee Research Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkins, C., Dishongh, R., Moore, S. et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436, 1044–1047 (2005). https://doi.org/10.1038/nature03957

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03957

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing