Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Reversing histone methylation

Abstract

Histones package DNA, and post-translational modifications of histones can regulate access to DNA. Until recently, histone methylation—unlike all other histone modifications—was considered a permanent mark. The discovery of enzymes that reverse the methylation of lysines and arginines challenges our current thinking on the unique nature of histone methylation, and substantially increases the complexity of histone modification pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the proteins that bind methylated histones.
Figure 2: Reaction mechanisms for methyl group removal.

Similar content being viewed by others

References

  1. Fischle, W., Wang, Y. & Allis, C. D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003)

    Article  CAS  Google Scholar 

  2. Peterson, C. L. & Laniel, M. A. Histones and histone modifications. Curr. Biol. 14, R546–R551 (2004)

    Article  CAS  Google Scholar 

  3. Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176 (2005)

    Article  CAS  Google Scholar 

  4. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004)

    Article  CAS  Google Scholar 

  6. Cuthbert, G. L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004)

    Article  CAS  Google Scholar 

  7. Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Bannister, A. J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell 109, 801–806 (2002)

    Article  CAS  Google Scholar 

  9. Martens, J. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005)

    Article  CAS  Google Scholar 

  10. Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003)

    Article  CAS  Google Scholar 

  11. Schotta, G. et al. A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004)

    Article  CAS  Google Scholar 

  12. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2, E171 (2004)

    Article  Google Scholar 

  14. Rougeulle, C. et al. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol. Cell. Biol. 24, 5475–5478 (2004)

    Article  CAS  Google Scholar 

  15. Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003)

    Article  CAS  Google Scholar 

  16. Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005)

    Article  CAS  Google Scholar 

  17. Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R. III & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Maurer-Stroh, S. et al. The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28, 69–74 (2003)

    Article  CAS  Google Scholar 

  20. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005)

    Article  CAS  Google Scholar 

  21. Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004)

    Article  CAS  Google Scholar 

  22. Freitag, M. & Selker, E. U. Controlling DNA methylation: many roads to one modification. Curr. Opin. Genet. Dev. 15, 191–199 (2005)

    Article  CAS  Google Scholar 

  23. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005)

    Article  CAS  Google Scholar 

  24. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004)

    Article  ADS  CAS  Google Scholar 

  25. White, S. A. & Allshire, R. C. Loss of Dicer fowls up centromeres. Nature Cell Biol. 6, 696–697 (2004)

    Article  CAS  Google Scholar 

  26. Elgin, S. C. & Grewal, S. I. Heterochromatin: silence is golden. Curr. Biol. 13, R895–R898 (2003)

    Article  CAS  Google Scholar 

  27. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Paik, W. K. & Kim, S. Enzymatic demethylation of calf thymus histones. Biochem. Biophys. Res. Commun. 51, 781–788 (1973)

    Article  CAS  Google Scholar 

  29. Hakimi, M. A. et al. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc. Natl Acad. Sci. USA 99, 7420–7425 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Shi, Y. J. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738 (2003)

    Article  ADS  CAS  Google Scholar 

  31. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature advance online publication, 3 August 2005 (doi:10.1038/nature04020).

  32. Boisvert, F. M., Chenard, C. A. & Richard, S. Protein interfaces in signalling regulated by arginine methylation. Sci. STKE doi:10.1126/stke.2712005re2 (2005).

  33. Lee, D. Y., Teyssier, C., Strahl, B. D. & Stallcup, M. R. Role of protein methylation in regulation of transcription. Endocr. Rev. 26, 147–170 (2005)

    Article  CAS  Google Scholar 

  34. Strahl, B. D. et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11, 996–1000 (2001)

    Article  CAS  Google Scholar 

  35. Metivier, R. et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115, 751–763 (2003)

    Article  CAS  Google Scholar 

  36. Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J. & Pruijn, G. J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25, 1106–1118 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Kouzarides.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bannister, A., Kouzarides, T. Reversing histone methylation. Nature 436, 1103–1106 (2005). https://doi.org/10.1038/nature04048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04048

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing