Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1

Abstract

Localization of β-actin messenger RNA to sites of active actin polymerization modulates cell migration during embryogenesis, differentiation and possibly carcinogenesis1,2,3,4,5. This localization requires the oncofetal protein ZBP1 (Zipcode binding protein 1), which binds to a conserved 54-nucleotide element in the 3′-untranslated region of the β-actin mRNA known as the ‘zipcode’. ZBP1 promotes translocation of the β-actin transcript to actin-rich protrusions in primary fibroblasts and neurons6,7. It is not known how the ZBP1–RNA complex achieves asymmetric protein sorting by localizing β-actin mRNA. Here we show that chicken ZBP1 modulates the translation of β-actin mRNA. ZBP1 associates with the β-actin transcript in the nucleus and prevents premature translation in the cytoplasm by blocking translation initiation. Translation only occurs when the ZBP1–RNA complex reaches its destination at the periphery of the cell. At the endpoint of mRNA transport, the protein kinase Src promotes translation by phosphorylating a key tyrosine residue in ZBP1 that is required for binding to RNA. These sequential events provide both temporal and spatial control over β-actin mRNA translation, which is important for cell migration and neurite outgrowth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ZBP1 associates with β-actin mRNA in NG cells and modulates its translation.
Figure 2: Phosphorylation of ZBP1 by Src interferes with RNA binding and relieves translational repression.
Figure 3: Regulation of ZBP1 by Src modulates neuronal outgrowth.

Similar content being viewed by others

References

  1. Lawrence, J. B. & Singer, R. H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 45, 407–415 (1986)

    Article  CAS  Google Scholar 

  2. Kislauskis, E. H., Li, Z., Singer, R. H. & Taneja, K. L. Isoform-specific 3′-untranslated sequences sort α-cardiac and β-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J. Cell Biol. 123, 165–172 (1993)

    Article  CAS  Google Scholar 

  3. Zhang, H. L. et al. Neurotrophin-induced transport of a β-actin mRNP complex increases β-actin levels and stimulates growth cone motility. Neuron 31, 261–275 (2001)

    Article  CAS  Google Scholar 

  4. Shestakova, E. A., Wyckoff, J., Jones, J., Singer, R. H. & Condeelis, J. Correlation of β-actin messenger RNA localization with metastatic potential in rat adenocarcinoma cell lines. Cancer Res. 59, 1202–1205 (1999)

    CAS  PubMed  Google Scholar 

  5. Shestakova, E. A., Singer, R. H. & Condeelis, J. The physiological significance of β-actin mRNA localization in determining cell polarity and directional motility. Proc. Natl Acad. Sci. USA 98, 7045–7050 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Ross, A. F., Oleynikov, Y., Kislauskis, E. H., Taneja, K. L. & Singer, R. H. Characterization of a β-actin mRNA zipcode-binding protein. Mol. Cell. Biol. 17, 2158–2165 (1997)

    Article  CAS  Google Scholar 

  7. Farina, K. L., Huttelmaier, S., Musunuru, K., Darnell, R. & Singer, R. H. Two ZBP1 KH domains facilitate β-actin mRNA localization, granule formation, and cytoskeletal attachment. J. Cell Biol. 160, 77–87 (2003)

    Article  CAS  Google Scholar 

  8. Eom, T., Antar, L. N., Singer, R. H. & Bassell, G. J. Localization of a β-actin messenger ribonucleoprotein complex with zipcode-binding protein modulates the density of dendritic filopodia and filopodial synapses. J. Neurosci. 23, 10433–10444 (2003)

    Article  CAS  Google Scholar 

  9. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Oleynikov, Y. & Singer, R. H. Real-time visualization of ZBP1 association with β-actin mRNA during transcription and localization. Curr. Biol. 13, 199–207 (2003)

    Article  CAS  Google Scholar 

  11. Ostareck, D. H. et al. Lipoxygenase mRNA silencing in erythroid differentiation: The 3′UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104, 281–290 (2001)

    Article  CAS  Google Scholar 

  12. Schaller, M. D. Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459–6472 (2001)

    Article  CAS  Google Scholar 

  13. Ostareck-Lederer, A. et al. c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol. Cell. Biol. 22, 4535–4543 (2002)

    Article  CAS  Google Scholar 

  14. Lukong, K. E. & Richard, S. Sam68, the KH domain-containing superSTAR. Biochim. Biophys. Acta 1653, 73–86 (2003)

    CAS  PubMed  Google Scholar 

  15. Mayer, B. J. SH3 domains: complexity in moderation. J. Cell Sci. 114, 1253–1263 (2001)

    CAS  PubMed  Google Scholar 

  16. Tiruchinapalli, D. M. et al. Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and β-actin mRNA in dendrites and spines of hippocampal neurons. J. Neurosci. 23, 3251–3261 (2003)

    Article  CAS  Google Scholar 

  17. Mingle, L. A. et al. Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J. Cell Sci. 118, 2425–2433 (2005)

    Article  CAS  Google Scholar 

  18. Medalia, O. et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Huynh, J. R., Munro, T. P., Smith-Litiere, K., Lepesant, J. A. & Johnston, D. S. The Drosophila hnRNPA/B homolog, Hrp48, is specifically required for a distinct step in osk mRNA localization. Dev. Cell 6, 625–635 (2004)

    Article  CAS  Google Scholar 

  20. Farina, K. L. & Singer, R. H. The nuclear connection in RNA transport and localization. Trends Cell Biol. 12, 466–472 (2002)

    Article  CAS  Google Scholar 

  21. Yano, T., de Quinto, S. L., Matsui, Y., Shevchenko, A. & Ephrussi, A. Hrp48, a Drosophila hnRNPA/B homolog, binds and regulates translation of oskar mRNA. Dev. Cell 6, 637–648 (2004)

    Article  CAS  Google Scholar 

  22. Hoek, K. S., Kidd, G. J., Carson, J. H. & Smith, R. hnRNP A2 selectively binds the cytoplasmic transport sequence of myelin basic protein mRNA. Biochemistry 37, 7021–7029 (1998)

    Article  CAS  Google Scholar 

  23. Kress, T. L., Yoon, Y. J. & Mowry, K. L. Nuclear RNP complex assembly initiates cytoplasmic RNA localization. J. Cell Biol. 165, 203–211 (2004)

    Article  CAS  Google Scholar 

  24. Bromann, P. A., Korkaya, H. & Courtneidge, S. A. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23, 7957–7968 (2004)

    Article  CAS  Google Scholar 

  25. Playford, M. P. & Schaller, M. D. The interplay between Src and integrins in normal and tumour biology. Oncogene 23, 7928–7946 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. and D. Ostareck-Lederer for providing Src plasmids and for helpful discussions. We also thank S. Shenoy for help with microscopy and image processing. This research was supported by NIH grants to R.H.S., G.J.B. and J.C., a DOE grant to R.H.S., and by a BMBF (Bundesministerium für Bildung und Forschung) grant to S.H. Author Contributions All of the work in the manuscript was done by S.H., with help from D.Z., X.M. and M. Lederer in the Singer laboratory, and most recently the Hüttelmaier laboratory, except for the work with primary neurons (Fig. 3i–k; J.D. and G.J.B.) and the FRET studies (Fig. 3a–e and Supplementary Fig. S7a–f; M. Lorenz and J.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Hüttelmaier or Robert H. Singer.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figures 1–9 and accompanying legends. (PDF 1718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hüttelmaier, S., Zenklusen, D., Lederer, M. et al. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005). https://doi.org/10.1038/nature04115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04115

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing