Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells

Abstract

A long-standing hypothesis on tumorigenesis is that cell division failure, generating genetically unstable tetraploid cells, facilitates the development of aneuploid malignancies1,2,3. Here we test this idea by transiently blocking cytokinesis in p53-null (p53-/-) mouse mammary epithelial cells (MMECs), enabling the isolation of diploid and tetraploid cultures. The tetraploid cells had an increase in the frequency of whole-chromosome mis-segregation and chromosomal rearrangements. Only the tetraploid cells were transformed in vitro after exposure to a carcinogen. Furthermore, in the absence of carcinogen, only the tetraploid cells gave rise to malignant mammary epithelial cancers when transplanted subcutaneously into nude mice. These tumours all contained numerous non-reciprocal translocations and an 8–30-fold amplification of a chromosomal region containing a cluster of matrix metalloproteinase (MMP) genes. MMP overexpression is linked to mammary tumours in humans and animal models4. Thus, tetraploidy enhances the frequency of chromosomal alterations and promotes tumour development in p53-/- MMECs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tetraploid p53 -/- MMECs are viable, but develop numerical and structural chromosomal abnormalities after passage.
Figure 2: Transformation of tetraploid p53 -/- MMECs after carcinogen treatment.
Figure 3: Tetraploid p53 -/- MMECs spontaneously generate malignant myoepitheliomas after subcutaneous transplantation into nude mice.
Figure 4: Gross chromosomal rearrangements in tumours from tetraploid p53 -/- MMECs.

Similar content being viewed by others

References

  1. Boveri, T. The Origin of Malignant Tumors (Williams and Wilkins, Baltimore, 1929)

    Google Scholar 

  2. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002)

    Article  CAS  Google Scholar 

  3. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nature Rev. Mol. Cell Biol. 5, 45–54 (2004)

    Article  CAS  Google Scholar 

  4. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002)

    Article  CAS  Google Scholar 

  5. Lingle, W. L. et al. Centrosome amplification drives chromosomal instability in breast tumour development. Proc. Natl Acad. Sci. USA 99, 1978–1983 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res. 63, 1398–1404 (2003)

    CAS  PubMed  Google Scholar 

  7. Jallepalli, P. V. & Lengauer, C. N. Chromosome segregation and cancer: cutting through the mystery. Nature Rev. Cancer 1, 109–117 (2001)

    Article  CAS  Google Scholar 

  8. Andreassen, P. R., Lohez, O. D., Lacroix, F. B. & Margolis, R. L. N. Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell 12, 1315–1328 (2001)

    Article  CAS  Google Scholar 

  9. Shackney, S. E. et al. Model for the genetic evolution of human solid tumors. Cancer Res. 49, 3344–3354 (1989)

    CAS  PubMed  Google Scholar 

  10. Levine, D. S., Sanchez, C. A., Rabinovitch, P. S. & Reid, B. J. Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumour antigen transgenic mouse model of pancreatic cancer. Proc. Natl Acad. Sci. USA 88, 6427–6431 (1991)

    Article  ADS  CAS  Google Scholar 

  11. Galipeau, P. C. et al. 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett's esophagus. Proc. Natl Acad. Sci. USA 93, 7081–7084 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Olaharski, A. J. et al. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis published online, 25 August 2005 (doi:10.1093/carcin/bgi218).

  13. Livingstone, L. R. et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70, 923–935 (1992)

    Article  CAS  Google Scholar 

  14. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Bassing, C. H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114, 359–370 (2003)

    Article  CAS  Google Scholar 

  16. Carter, S. B. Effects of cytochalasins on mammalian cells. Nature 213, 261–264 (1967)

    Article  ADS  CAS  Google Scholar 

  17. Uetake, Y. & Sluder, G. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. J. Cell Biol. 165, 609–615 (2004)

    Article  CAS  Google Scholar 

  18. Wong, C. & Stearns, T. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol. 6, 6 (2005)

    Article  Google Scholar 

  19. Boutwell, R. K. The function and mechanism of promoters of carcinogenesis. Crit. Rev. Toxicol. 2, 419–443 (1974)

    Article  CAS  Google Scholar 

  20. Shi, Q. & King, R. W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature doi:10.1038/nature03958 (this issue)

  21. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G. F. MET, metastasis, motility and more. Nature Rev. Mol. Cell Biol. 4, 915–925 (2003)

    Article  CAS  Google Scholar 

  22. Daniels, M. J., Wang, Y., Lee, M. & Venkitaraman, A. R. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306, 876–879 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Yang, X. et al. LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nature Cell Biol. 6, 609–617 (2004)

    Article  CAS  Google Scholar 

  24. Mayer, V. W. & Aguilera, A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat. Res. 231, 177–186 (1990)

    Article  CAS  Google Scholar 

  25. Lin, H. et al. Polyploids require Bik1 for kinetochore–microtubule attachment. J. Cell Biol. 155, 1173–1184 (2001)

    Article  CAS  Google Scholar 

  26. Feldser, D. M., Hackett, J. A. & Greider, C. W. Telomere dysfunction and the initiation of genome instability. Nature Rev. Cancer 3, 623–627 (2003)

    Article  CAS  Google Scholar 

  27. Stukenberg, P. T. Triggering p53 after cytokinesis failure. J. Cell Biol. 165, 607–608 (2004)

    Article  CAS  Google Scholar 

  28. Murphy, K. L., Dennis, A. P. & Rosen, J. M. A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53-null mammary epithelial cell model. FASEB J. 14, 2291–2302 (2000)

    Article  CAS  Google Scholar 

  29. Brennan, C. et al. High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res. 64, 4744–4748 (2004)

    Article  CAS  Google Scholar 

  30. David, G., Turner, G. M., Yao, Y., Protopopov, A. & DePinho, R. A. mSin3-associated protein, mSds3, is essential for pericentric heterochromatin formation and chromosome segregation in mammalian cells. Genes Dev. 17, 2396–2405 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Artandi, L. Chin, R. DePinho, C. M. Kuperwasser, M. E. McLaughlin, K. Polyak, A. Protopopov, J. Ruderman, J. Sage, P. Sicinski, T. Stearns and C. Wong for discussions; K. Polyak for showing us procedures with MMECs; A. D'Andrea, R. DePinho, M. Ewen, R. King, M. E. McLaughlin, K. Polyak and Z. Storchova for comments on the manuscript; J. Dunn for assistance with the figures; and S. Doxsey for the anti-pericentrin antibody. T.F. was a Uehara Memorial Foundation research fellow. D.P. was supported by an NIH grant and a scholar award from the Leukemia and Lymphoma Society of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pellman.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Characterization of viable cultures of diploid and tetraploid p53-/- MMECs (PDF 5085 kb)

Supplementary Figure S2

Tetraploid p53+/+ MMECs do not proliferate in vitro. (PDF 3309 kb)

Supplementary Figure S3

Genome-wide array-CGH analysis of tetraploid p53-/- MMECs hybridized to diploid MMECs. (PDF 711 kb)

Supplementary Figure S4

DCB does not induce DNA damage in p53-/- MMECs or wild-type p53+/+ MMECs. (PDF 3282 kb)

Supplementary Figure S5

DNA damage assessed by γ-H2AX labeling in p53-/-MMECs before and after FACS sorting. (PDF 2005 kb)

Supplementary Figure S6

Gross chromosomal rearrangements in tetraploid-derived transformed cells growing in soft agar (Figure 2). (PDF 517 kb)

Supplementary Figure S7

Characterization of the spontaneous tumors derived from tetraploid p53-/- MMECs. (PDF 11442 kb)

Supplementary Figure S8

Gross chromosomal rearrangements in the spontaneous tumors derived from tetraploid p53-/- MMECs. (PDF 301 kb)

Supplementary Figure S9

Genome-wide array-CGH analysis of 8 tumors derived from tetraploid p53-/- MMECs. (PDF 2838 kb)

Supplementary Figure 10

Genes on the amplicons identified from tetraploid-derived tumor. (PDF 356 kb)

Supplementary Figure Legends

This file contains full text descriptions for all Supplementary Figures. (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, T., Bandi, M., Nitta, M. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005). https://doi.org/10.1038/nature04217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04217

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing