Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae

Abstract

In studying the genomes of extinct species, two principal limitations are typically the small quantities of endogenous ancient DNA and its degraded condition1, even though products of up to 1,600 base pairs (bp) have been amplified in rare cases2. Using small overlapping polymerase chain reaction products, longer stretches of sequences or even whole mitochondrial genomes3,4 can be reconstructed, but this approach is limited by the number of amplifications that can be performed from rare samples. Thus, even from well-studied Pleistocene species such as mammoths, ground sloths and cave bears, no DNA sequences of more than about 1,000 bp have been reconstructed5,6,7. Here we report the complete mitochondrial genome sequence of the Pleistocene woolly mammoth Mammuthus primigenius. We used about 200 mg of bone and a new approach that allows the simultaneous retrieval of multiple sequences from small amounts of degraded DNA. Our phylogenetic analyses show that the mammoth was more closely related to the Asian than to the African elephant. However, the divergence of mammoth, African and Asian elephants occurred over a short time, corresponding to only about 7% of the total length of the phylogenetic tree for the three evolutionary lineages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the mammoth mitochondrial genome.
Figure 2: Principle of the multiplex approach and typical results.
Figure 3: Comparison of three-species trees.

Similar content being viewed by others

References

  1. Pääbo, S. et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 38, 645–679 (2004)

    Article  Google Scholar 

  2. Lambert, D. M. et al. Rates of evolution in ancient DNA from Adelie penguins. Science 295, 2270–2273 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Cooper, A. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Haddrath, O. & Baker, A. J. Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc. R. Soc. Lond. B 268, 939–945 (2001)

    Article  CAS  Google Scholar 

  5. Höss, M., Dilling, A., Currant, A. & Pääbo, S. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc. Natl Acad. Sci. USA 93, 181–185 (1996)

    Article  ADS  Google Scholar 

  6. Loreille, O. et al. Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Curr. Biol. 11, 200–203 (2001)

    Article  CAS  Google Scholar 

  7. Yang, H., Golenberg, E. M. & Shoshani, J. Phylogenetic resolution within the Elephantidae using fossil DNA sequences from the American mastodon (Mammut americanum) as an outgroup. Proc. Natl Acad. Sci. USA 93, 1190–1194 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Hofreiter, M., Jaenicke, V., Serre, D., von Haeseler, A. & Pääbo, S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 29, 4793–4799 (2001)

    Article  CAS  Google Scholar 

  9. Bensasson, D., Zhang, D. X., Hartl, D. L. & Hewitt, G. M. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol. Evol. 16, 314–321 (2001)

    Article  CAS  Google Scholar 

  10. Greenwood, A. D. & Pääbo, S. Nuclear insertion sequences of mitochondrial DNA predominate in hair but not in blood of elephants. Mol. Ecol. 8, 133–137 (1999)

    Article  CAS  Google Scholar 

  11. Greenwood, A., Capelli, C., Possnert, G. & Pääbo, S. Nuclear DNA sequences from late Pleistocene megafauna. Mol. Biol. Evol. 16, 1466–1473 (1999)

    Article  CAS  Google Scholar 

  12. Noro, M., Masuda, R., Dubrovo, I. A., Yoshida, M. C. & Kato, M. Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. J. Mol. Evol. 46, 314–326 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Thomas, M. G., Hagelberg, E., Jone, H. B., Yang, Z. & Lister, A. M. Molecular and morphological evidence on the phylogeny of the Elephantidae. Proc. R. Soc. Lond. B 267, 2493–2500 (2000)

    Article  CAS  Google Scholar 

  14. Debruyne, R., Barriel, V. & Tassy, P. Mitochondrial cytochrome b of the Lyakhov mammoth (Proboscidea, Mammalia): new data and phylogenetic analyses of Elephantidae. Mol. Phylogenet. Evol. 26, 421–434 (2003)

    Article  CAS  Google Scholar 

  15. Ozawa, T., Hayashi, S. & Mikhelson, V. M. Phylogenetic position of mammoth and Steller's sea cow within Tethytheria demonstrated by mitochondrial DNA sequences. J. Mol. Evol. 44, 406–413 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Cummings, M. P., Otto, S. P. & Wakeley, J. Sampling properties of DNA sequence data in phylogenetic analysis. Mol. Biol. Evol. 12, 814–822 (1995)

    CAS  PubMed  Google Scholar 

  17. Shoshani, J. Understanding proboscidean evolution: a formidable task. Trends. Ecol. Evol. 13, 480–487 (1998)

    Article  CAS  Google Scholar 

  18. Felsenstein, J. Inferring Phylogenies 196–221 (Sinauer Associates, Sunderland, 2004)

    Google Scholar 

  19. Tajima, F. Simple methods for testing the molecular evolutionary clock hypothesis. Genetics 135, 599–607 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Felsenstein, J. Confidence-limits on phylogenies with a molecular clock. Syst. Zool. 34, 152–161 (1985)

    Article  Google Scholar 

  21. Tassy, P. in Lothagam: The Dawn of Humanity in Eastern Africa (eds Leakey, M. G. & Harris, J. M.) 331–358 (Columbia Univ. Press, New York, 2003)

    Google Scholar 

  22. Nei, M. in Evolutionary Perspectives and the New Genetics (eds Gershowitz, H., Rucknagel, D. L. & Tashian, R. E.) 133–147 (Alan R. Liss, New York, 1986)

    Google Scholar 

  23. Chen, F. C. & Li, W. H. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am. J. Hum. Genet. 68, 444–456 (2001)

    Article  CAS  Google Scholar 

  24. Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998)

    Article  CAS  Google Scholar 

  26. Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, Sunderland, 2003)

    Google Scholar 

  27. Ronquist, F. & Huelsenbeck, J. P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  CAS  Google Scholar 

  28. Schmidt, H. A., Strimmer, K., Vingron, M. & Haeseler, A. TREE-PUZZLE: Maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504 (2002)

    Article  CAS  Google Scholar 

  29. Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratories for discussions and support, G. Khlopatchev for providing the mammoth bone and K. Finstermeier for help with figure design. This work was supported by the Max Planck Society. J.L.P. and M.S. were supported by an NIH grant (to M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hofreiter.

Ethics declarations

Competing interests

The complete mammoth mitochondrial DNA sequence has been deposited in GenBank under accession number DQ188829. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

Full discription of methods and analysis used in this study. (DOC 142 kb)

Supplementary Table

Table of all primers used in Multiplex PCR. (DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, J., Dear, P., Pollack, J. et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature 439, 724–727 (2006). https://doi.org/10.1038/nature04432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04432

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing