Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex

Abstract

Hsp90 (heat shock protein of 90 kDa) is a ubiquitous molecular chaperone responsible for the assembly and regulation of many eukaryotic signalling systems and is an emerging target for rational chemotherapy of many cancers. Although the structures of isolated domains of Hsp90 have been determined, the arrangement and ATP-dependent dynamics of these in the full Hsp90 dimer have been elusive and contentious. Here we present the crystal structure of full-length yeast Hsp90 in complex with an ATP analogue and the co-chaperone p23/Sba1. The structure reveals the complex architecture of the ‘closed’ state of the Hsp90 chaperone, the extensive interactions between domains and between protein chains, the detailed conformational changes in the amino-terminal domain that accompany ATP binding, and the structural basis for stabilization of the closed state by p23/Sba1. Contrary to expectations, the closed Hsp90 would not enclose its client proteins but provides a bipartite binding surface whose formation and disruption are coupled to the chaperone ATPase cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of Hsp90–p23/Sba1 complex.
Figure 2: ATP-dependent conformational changes.
Figure 3: Domain interfaces and active-site formation.
Figure 4: Mechanism of ATPase regulation by p23/Sba1.

Similar content being viewed by others

References

  1. Panaretou, B. et al. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. EMBO J. 17, 4829–4836 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Obermann, W. M. J., Sondermann, H., Russo, A. A., Pavletich, N. P. & Hartl, F. U. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J. Cell Biol. 143, 901–910 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mimnaugh, E. G., Chavany, C. & Neckers, L. Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J. Biol. Chem. 271, 22796–22801 (1996)

    CAS  PubMed  Google Scholar 

  4. Schneider, C. et al. Pharmacologic shifting of a balance between protein folding and degradation mediated by Hsp90. Proc. Natl Acad. Sci. USA 93, 14536–14541 (1996)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pearl, L. H. Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr. Opin. Genet. Dev. 15, 55–61 (2005)

    CAS  PubMed  Google Scholar 

  6. Workman, P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 206, 149–157 (2004)

    CAS  PubMed  Google Scholar 

  7. Panaretou, B. et al. Activation of the ATPase activity of Hsp90 by the stress-regulated co-chaperone Aha1. Mol. Cell 10, 1307–1318 (2002)

    CAS  PubMed  Google Scholar 

  8. Prodromou, C. et al. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J. 18, 754–762 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Siligardi, G. et al. Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J. Biol. Chem. 277, 20151–20159 (2002)

    CAS  PubMed  Google Scholar 

  10. Johnson, J. L. & Toft, D. O. Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol. Endocrinol. 9, 670–678 (1995)

    CAS  PubMed  Google Scholar 

  11. Fang, Y., Fliss, A. E., Rao, J. & Caplan, A. J. SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol. Cell. Biol. 18, 3727–3734 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sullivan, W. et al. Nucleotides and two functional states of hsp90. J. Biol. Chem. 272, 8007–8012 (1997)

    CAS  PubMed  Google Scholar 

  13. Siligardi, G. et al. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J. Biol. Chem. 279, 51989–51998 (2004)

    CAS  PubMed  Google Scholar 

  14. McLaughlin, S. H., Smith, H. W. & Jackson, S. E. Stimulation of the weak ATPase activity of human Hsp90 by a client protein. J. Mol. Biol. 315, 787–798 (2002)

    CAS  PubMed  Google Scholar 

  15. Richter, K., Walter, S. & Buchner, J. The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J. Mol. Biol. 342, 1403–1413 (2004)

    CAS  PubMed  Google Scholar 

  16. Pratt, W. B. & Dittmar, K. D. Studies with purified chaperones advance the understanding of the mechanism of glucocorticoid receptor hsp90 heterocomplex assembly. Trends Endocrinol. Metab. 9, 244–252 (1998)

    CAS  PubMed  Google Scholar 

  17. Young, J. C. & Hartl, F. U. Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. EMBO J. 19, 5930–5940 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chadli, A. et al. Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. Proc. Natl Acad. Sci. USA 97, 12524–12529 (2000)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prodromou, C. et al. The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. EMBO J. 19, 4383–4392 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Huai, Q. et al. Structures of the N-terminal and middle domains of E. coli Hsp90 and conformation changes upon ADP binding. Structure 13, 579–590 (2005)

    CAS  PubMed  Google Scholar 

  21. Immormino, R. M. et al. Ligand-induced conformational shift in the N-terminal domain of GRP94, an Hsp90 chaperone. J. Biol. Chem. 279, 46162–46171 (2004)

    CAS  PubMed  Google Scholar 

  22. McLaughlin, S. H., Ventouras, L. A., Lobbezoo, B. & Jackson, S. E. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform. J. Mol. Biol. 344, 813–826 (2004)

    CAS  PubMed  Google Scholar 

  23. Louvion, J. F., Warth, R. & Picard, D. Two eukaryote-specific regions of Hsp82 are dispensable for its viability and signal transduction functions in yeast. Proc. Natl Acad. Sci. USA 93, 13937–13942 (1996)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prodromou, C., Roe, S. M., Piper, P. W. & Pearl, L. H. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nature Struct. Biol. 4, 477–482 (1997)

    CAS  PubMed  Google Scholar 

  25. Meyer, P. et al. Structural and functional analysis of the middle segment of Hsp90: Implications for ATP hydrolysis and client-protein and co-chaperone interactions. Mol. Cell 11, 647–658 (2003)

    CAS  PubMed  Google Scholar 

  26. Weaver, A. J., Sullivan, W. P., Felts, S. J., Owen, B. A. & Toft, D. O. Crystal structure and activity of human p23, a heat shock protein 90 co-chaperone. J. Biol. Chem. 275, 23045–23052 (2000)

    CAS  PubMed  Google Scholar 

  27. Prodromou, C. et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75 (1997)

    CAS  PubMed  Google Scholar 

  28. Stebbins, C. E. et al. Crystal structure of an Hsp90-geldanamycin complex: Targetting of a protein chaperone by an antitumor agent. Cell 89, 239–250 (1997)

    CAS  PubMed  Google Scholar 

  29. Roe, S. M. et al. The structural basis for inhibition of the Hsp90 molecular chaperone, by the anti-tumour antibiotics radicicol and geldanamycin. J. Med. Chem. 42, 260–266 (1999)

    CAS  PubMed  Google Scholar 

  30. Cheung, K. M. et al. The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg. Med. Chem. Lett. 15, 3338–3343 (2005)

    ADS  CAS  PubMed  Google Scholar 

  31. Wright, L. et al. Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem. Biol. 11, 775–785 (2004)

    CAS  PubMed  Google Scholar 

  32. Harris, S. F., Shiau, A. K. & Agard, D. A. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 12, 1087–1097 (2004)

    CAS  PubMed  Google Scholar 

  33. Scheufler, C. et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210 (2000)

    CAS  PubMed  Google Scholar 

  34. Bohen, S. P. & Yamamoto, K. R. Isolation of Hsp90 mutants by screening for decreased steroid receptor function. Proc. Natl Acad. Sci. USA 90, 11424–11428 (1993)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nathan, D. F. & Lindquist, S. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase. Mol. Cell. Biol. 15, 3917–3925 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ban, C., Junop, M. & Yang, W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97, 85–97 (1999)

    CAS  PubMed  Google Scholar 

  37. Wigley, D. B., Davies, G. J., Dodson, E. J., Maxwell, A. & Dodson, G. Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351, 624–629 (1991)

    ADS  CAS  PubMed  Google Scholar 

  38. Meyer, P. et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J. 23, 511–519 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Oxelmark, E. et al. Genetic dissection of p23, an Hsp90 cochaperone, reveals a distinct surface involved in estrogen receptor signaling. J. Biol. Chem. 278, 36547–36555 (2003)

    CAS  PubMed  Google Scholar 

  40. Lotz, G. P., Lin, H., Harst, A. & Obermann, W. M. J. Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J. Biol. Chem. 278, 17228–17235 (2003)

    CAS  PubMed  Google Scholar 

  41. Harst, A., Lin, H. & Obermann, W. M. Aha1 competes with Hop, p50 and p23 for binding to the molecular chaperone Hsp90 and contributes to kinase and hormone receptor activation. Biochem. J. 387, 789–796 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, W. et al. Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J. Mol. Biol. 340, 891–907 (2004)

    CAS  PubMed  Google Scholar 

  43. Richter, K., Reinstein, J. & Buchner, J. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle. J. Biol. Chem. 277, 44905–44910 (2002)

    CAS  PubMed  Google Scholar 

  44. Roe, S. M. et al. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50cdc37. Cell 116, 87–98 (2004)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Gold, P. Wan, A. Doré and M. Kilkenny for assistance with synchrotron data collection. This work was supported by a Programme Grant from The Wellcome Trust and infrastructural support for structural biology at The Institute of Cancer Research, from Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence H. Pearl.

Ethics declarations

Competing interests

Coordinates and structure factors for the Hsp90–p23/Sba1–AMP-PNP complex and M-C construct have been deposited in the Protein Data Bank with accession codes 2CGE and 2CG9. Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

This file contains additional details of the methods used in this study. (DOC 79 kb)

Supplementary Figure Legends

This file contains text to accompany the below Supplementary Figure. (DOC 30 kb)

Supplementary Table

Table of crystallographic statistics. (DOC 56 kb)

Supplementary Figure 1

In the absence of ATP, Hsp90 conformation is unconstrained save for constitutive dimerisation via the C-domains. (PDF 59 kb)

Supplementary Notes

This file contains details of the significant proteins used in this study. (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M., Roe, S., Vaughan, C. et al. Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006). https://doi.org/10.1038/nature04716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04716

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing