Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Notch signalling regulates stem cell numbers in vitro and in vivo

Abstract

The hope of developing new transplantation therapies for degenerative diseases is limited by inefficient stem cell growth and immunological incompatibility with the host1,2. Here we show that Notch receptor activation induces the expression of the specific target genes hairy and enhancer of split 3 (Hes3) and Sonic hedgehog (Shh) through rapid activation of cytoplasmic signals, including the serine/threonine kinase Akt, the transcription factor STAT3 and mammalian target of rapamycin, and thereby promotes the survival of neural stem cells. In both murine somatic and human embryonic stem cells, these positive signals are opposed by a control mechanism that involves the p38 mitogen-activated protein kinase. Transient administration of Notch ligands to the brain of adult rats increases the numbers of newly generated precursor cells and improves motor skills after ischaemic injury. These data indicate that stem cell expansion in vitro and in vivo, two central goals of regenerative medicine, may be achieved by Notch ligands through a pathway that is fundamental to development and cancer3,4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch ligands activate second messenger signalling and support NSC (E13.5) survival in vitro.
Figure 2: Mediators and modulators of Notch signalling in NSC (E13.5) cultures.
Figure 3: A stem cell signalling pathway that affects survival and differentiation.
Figure 4: In vitro and in vivo data support a general role for the signalling model in stem cell biology.

Similar content being viewed by others

References

  1. Wakayama, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Xu, R. H. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods 2, 185–190 (2005)

    Article  CAS  Google Scholar 

  3. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999)

    Article  ADS  CAS  Google Scholar 

  4. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Levy, D. E. & Darnell, J. E. Jr Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002)

    Article  CAS  Google Scholar 

  6. Goriely, A., Dumont, N., Dambly-Chaudiere, C. & Ghysen, A. The determination of sense organs in Drosophila: effect of the neurogenic mutations in the embryo. Development 113, 1395–1404 (1991)

    CAS  PubMed  Google Scholar 

  7. Tokunaga, A. et al. Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J. Neurochem. 90, 142–154 (2004)

    Article  CAS  Google Scholar 

  8. Hatakeyama, J. et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131, 5539–5550 (2004)

    Article  CAS  Google Scholar 

  9. Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M. & McKay, R. D. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140 (1996)

    Article  CAS  Google Scholar 

  10. Franke, T. F. et al. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727–736 (1995)

    Article  CAS  Google Scholar 

  11. Dudek, H. et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665 (1997)

    Article  CAS  Google Scholar 

  12. Nave, B. T., Ouwens, M., Withers, D. J., Alessi, D. R. & Shepherd, P. R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J. 344, 427–431 (1999)

    Article  CAS  Google Scholar 

  13. Rajan, P. & McKay, R. D. Multiple routes to astrocytic differentiation in the CNS. J. Neurosci. 18, 3620–3629 (1998)

    Article  CAS  Google Scholar 

  14. Yang, J. et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res. 65, 939–947 (2005)

    CAS  PubMed  Google Scholar 

  15. Pullen, N. et al. Phosphorylation and activation of p70s6k by PDK1. Science 279, 707–710 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Alessi, D. R., Kozlowski, M. T., Weng, Q. P., Morrice, N. & Avruch, J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr. Biol. 8, 69–81 (1998)

    Article  CAS  Google Scholar 

  17. Deak, M., Clifton, A. D., Lucocq, L. M. & Alessi, D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 17, 4426–4441 (1998)

    Article  CAS  Google Scholar 

  18. Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R. & Pouyssegur, J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J. Biol. Chem. 271, 20608–20616 (1996)

    Article  CAS  Google Scholar 

  19. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002)

    Article  CAS  Google Scholar 

  20. Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Romer, J. & Curran, T. Targeting medulloblastoma: small-molecule inhibitors of the Sonic Hedgehog pathway as potential cancer therapeutics. Cancer Res. 65, 4975–4978 (2005)

    Article  CAS  Google Scholar 

  22. Kamakura, S. et al. Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nature Cell Biol. 6, 547–554 (2004)

    Article  CAS  Google Scholar 

  23. Oishi, K. et al. Notch promotes survival of neural precursor cells via mechanisms distinct from those regulating neurogenesis. Dev. Biol. 276, 172–184 (2004)

    Article  CAS  Google Scholar 

  24. Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998)

    Article  CAS  Google Scholar 

  25. Watanabe, S. et al. Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25, 2697–2707 (2006)

    Article  CAS  Google Scholar 

  26. Pera, M. F. et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117, 1269–1280 (2004)

    Article  CAS  Google Scholar 

  27. Couillard-Despres, S. et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur. J. Neurosci. 21, 1–14 (2005)

    Article  Google Scholar 

  28. Leker, R. R., Gai, N., Mechoulam, R. & Ovadia, H. Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210. Stroke 34, 2000–2006 (2003)

    Article  CAS  Google Scholar 

  29. Zhao, Y., Patzer, A., Gohlke, P., Herdegen, T. & Culman, J. The intracerebral application of the PPARγ-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain. Eur. J. Neurosci. 22, 278–282 (2005)

    Article  Google Scholar 

  30. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kageyama and T. Kitamura for the Hes3 and STAT3 plasmids. This research was supported in part by the Intramural Research Program of the NIH, NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald D. G. McKay.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

A schematic representation of this work. (PDF 154 kb)

Supplementary Figure 2

Notch ligands activate second messenger signalling and support NSC (E13.5) survival in vitro. (PDF 104 kb)

Supplementary Figure 3

Notch activation promotes the generation of adult NSC in vivo. (PDF 127 kb)

Supplementary Figure

This file contains the Supplementary Figure Legends and Supplementary Tables 1–3. (DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Androutsellis-Theotokis, A., Leker, R., Soldner, F. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006). https://doi.org/10.1038/nature04940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04940

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing