Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Light in tiny holes

Abstract

The presence of tiny holes in an opaque metal film, with sizes smaller than the wavelength of incident light, leads to a wide variety of unexpected optical properties such as strongly enhanced transmission of light through the holes and wavelength filtering. These intriguing effects are now known to be due to the interaction of the light with electronic resonances in the surface of the metal film, and they can be controlled by adjusting the size and geometry of the holes. This knowledge is opening up exciting new opportunities in applications ranging from subwavelength optics and optoelectronics to chemical sensing and biophysics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical transmission properties of single holes in metal films.
Figure 2: Schematic diagram of the fluorescence correlation spectroscopy in a single hole.
Figure 3: Optical properties of single apertures surrounded by periodic corrugations.
Figure 4: Ultrafast miniature photodetector.
Figure 5: Transmission spectrum of hole arrays.
Figure 6: Holes in a dimple array generating the letters ‘hν’ in transmission.
Figure 7: Infrared enhanced vibrational spectra.

Similar content being viewed by others

References

  1. Grimaldi, F.-M. in Physico-mathesis de Lumine, Coloribus, et Iride, Aliisque Sequenti Pagina Indicatis 9 (Bologna, 1665)

    Google Scholar 

  2. Bethe, H. A. Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–194 (1992)

    ADS  CAS  PubMed  Google Scholar 

  4. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    ADS  CAS  Google Scholar 

  5. Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    ADS  MathSciNet  CAS  Google Scholar 

  6. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Roberts, A. Electromagnetic theory of diffraction by a circular aperture in a thick, perfectly conducting screen. J. Opt. Soc. Am. A 4, 1970–1983 (1987)

    ADS  CAS  Google Scholar 

  8. Gordon, R. & Brolo, A. Increased cut-off wavelength for a subwavelength hole in a real metal. Opt. Express 13, 1933–1938 (2005)

    ADS  PubMed  Google Scholar 

  9. Obermüller, C. & Karrai, K. Far-field characterization of diffracting apertures. Appl. Phys. Lett. 67, 3408–3410 (1995)

    ADS  Google Scholar 

  10. Degiron, A., Lezec, H. J., Yamamoto, N. & Ebbesen, T. W. Optical transmission properties of a single subwavelength aperture in a real metal. Opt. Commun. 239, 61–66 (2004)

    ADS  CAS  Google Scholar 

  11. Yin, L. et al. Surface palsmons at single nanoholes in Au films. Appl. Phys. Lett. 85, 467–469 (2004)

    ADS  CAS  Google Scholar 

  12. Garcia-Vidal, F. J., Moreno, E., Porto, J. A. & Martin-Moreno, L. Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95, 103901 (2005)

    ADS  CAS  PubMed  Google Scholar 

  13. Chang, C.-W., Sarychev, A. K. & Shalaev, V. M. Light diffraction by a subwavelength circular aperture. Laser Phys. Lett. 2, 351–355 (2005)

    ADS  Google Scholar 

  14. Popov, E. et al. Surface plasmon excitation on a single subwavelength hole in a metallic sheet. Appl. Opt. 44, 2332–2337 (2005)

    ADS  PubMed  Google Scholar 

  15. Webb, K. J. & Li, J. Analysis of transmission through small apertures in conducting films. Phys. Rev. B 73, 033401 (2006)

    ADS  Google Scholar 

  16. Garcia de Abajo, F. J. Light transmission through a single cylindrical hole in a metallic film. Opt. Express 10, 1475–1484 (2002)

    ADS  PubMed  Google Scholar 

  17. Magde, D., Elson, E. & Webb, W. W. Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–707 (1972)

    ADS  CAS  Google Scholar 

  18. Levene, M. J. et al. Zero-mode waveguides for single molecule analysis at high concentrations. Science 299, 682–686 (2003)

    ADS  CAS  PubMed  Google Scholar 

  19. Rignault, H. et al. Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys. Rev. Lett. 95, 117401 (2005)

    ADS  Google Scholar 

  20. Lezec, H. J. et al. Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)

    ADS  CAS  PubMed  Google Scholar 

  21. Thio, T., Pellerin, K. M., Linke, R. A., Lezec, H. J. & Ebbesen, T. W. Enhanced light transmission through a single subwavelength aperture. Opt. Lett. 26, 1972–1974 (2001)

    ADS  CAS  PubMed  Google Scholar 

  22. Degiron, A. & Ebbesen, T. W. Analysis of the transmission process through single apertures surrounded by periodic corrugations. Opt. Express 12, 3694–3700 (2004)

    ADS  CAS  PubMed  Google Scholar 

  23. Martin-Moreno, L., Garcia-Vidal, F. J., Lezec, H. J., Degiron, A. & Ebbesen, T. W. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. Phys. Rev. Lett. 90, 167401 (2003)

    ADS  CAS  PubMed  Google Scholar 

  24. Garcia-Vidal, F. J., Lezec, H. J., Ebbesen, T. W. & Martin-Moreno, L. Multiple paths to enhance optical transmission through a subwavelength slit. Phys. Rev. Lett. 90, 213901 (2003)

    ADS  CAS  PubMed  Google Scholar 

  25. Garcia-Vidal, F. J., Martin-Moreno, L., Lezec, H. J. & Ebbesen, T. W. Focusing light with a single subwavelength aperture flanked by surface corrugations. Appl. Phys. Lett. 83, 4500–4502 (2003)

    ADS  CAS  Google Scholar 

  26. Yu, L.-B. et al. Physical origin of directional beaming from a subwavelength slit. Phys. Rev. B 71, 041405(R) (2005)

    ADS  Google Scholar 

  27. Ishi, T., Fujikata, J. & Ohashi, K. Large optical transmission through a single subwavelength hole associated with a sharp-apex grating. Jpn J. Appl. Phys. 44, L170–L172 (2005)

    ADS  CAS  Google Scholar 

  28. Sun, Z. & Kim, H. K. Refractive transmission of light and beam shaping with metallic nano-optics lenses. Appl. Phys. Lett. 85, 642–644 (2004)

    ADS  CAS  Google Scholar 

  29. Gbur, G., Schouten, H. F. & Visser, T. D. Achieving superresolution in near-field optical data readout systems using surface plasmons. Appl. Phys. Lett. 87, 191109 (2005)

    ADS  Google Scholar 

  30. Fujikata, J. et al. Surface plasmon enhancement effect and its application to near-field optical recording. Trans. Magn. Soc. Jpn 4, 255–259 (2004)

    CAS  Google Scholar 

  31. Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt. Lett. 28, 423–425 (2003)

    ADS  PubMed  Google Scholar 

  32. Ishi, T., Fujikata, J., Makita, K., Baba, T. & Ohashi, K. Si nano-photodiode with a surface plasmon antenna. Jpn J. Appl. Phys. 44, L364–L366 (2005)

    ADS  CAS  Google Scholar 

  33. Degiron, A., Lezec, H. J., Barnes, W. L. & Ebbesen, T. W. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl. Phys. Lett. 81, 4327–4329 (2002)

    ADS  CAS  Google Scholar 

  34. Bravo-abad, J. et al. How light emerges from an illuminated array of subwavelength holes. Nature Phys. 2, 120–123 (2006)

    ADS  CAS  Google Scholar 

  35. Porto, J. A., Garcia-Vidal, F. J. & Pendry, J. B. Transmission resonances on metalllic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999)

    ADS  CAS  Google Scholar 

  36. Strelniker, Y. M. & Bergman, D. J. Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field. Phys. Rev. B 59, R12763 (1999)

    ADS  CAS  Google Scholar 

  37. Martin-Moreno, L. et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)

    ADS  CAS  PubMed  Google Scholar 

  38. Popov, E., Neviere, M., Enoch, S. & Reinisch, R. Theory of light transmission through subwavelength periodic hole arrays. Phys. Rev. B 62, 16100 (2000)

    ADS  CAS  Google Scholar 

  39. Barbara, A., Quemerais, P., Bustarret, E. & Lopez-Rios, T. Optical transmission through subwavelength metallic gratings. Phys. Rev. B 66, 161403(R) (2002)

    ADS  Google Scholar 

  40. Baida, F. I. & Van Labeke, D. Light transmission by subwavelength annular aperture arrays in metallic films. Opt. Commun. 209, 17–22 (2002)

    ADS  CAS  Google Scholar 

  41. Sarychev, A. K., Podolskiy, V. A., Dykhne, A. M. & Shalaev, V. M. Resonance transmittance through a metal film with subwavelength holes. IEEE J. Quant. Elect. 38, 956–963 (2002)

    ADS  CAS  Google Scholar 

  42. Sarrazin, M., Vigneron, J. P. & Vigoureux, J.-M. Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes. Phys. Rev. B 67, 085415 (2003)

    ADS  Google Scholar 

  43. Genet, C., van Exter, M. P. & Woerdman, J. P. Fano-type interpretation of red shifts and red tails in hole array transmission spectra. Opt. Commun. 225, 331–336 (2003)

    ADS  CAS  Google Scholar 

  44. Zayats, A. V., Salomon, L. & de Fornel, F. How light gets through periodically nanostructured metal films: a role of surface polaritonic crystals. J. Microsc. 210, 344–349 (2003)

    MathSciNet  CAS  PubMed  Google Scholar 

  45. Lalanne, P., Rodier, J. C. & Hugonin, J. P. Surface plasmons of metallic surfaces perforated by nanohole arrays. J. Opt. Pure Appl. Opt. 7, 422–426 (2005)

    ADS  CAS  Google Scholar 

  46. Lomakin, V. & Michielssen, E. Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs. Phys. Rev. B 71, 235117 (2005)

    ADS  Google Scholar 

  47. Müller, R., Malyarchuk, V. & Lienau, C. Three-dimensional theory on light-induced near-field dynamics in a metal film with a periodic array of nanoholes. Phys. Rev. B 68, 205415 (2003)

    ADS  Google Scholar 

  48. Takakura, Y. Optical resonance in a narrow slit in a thick metallic screen. Phys. Rev. Lett. 86, 5601–5603 (2001)

    ADS  CAS  PubMed  Google Scholar 

  49. Shipman, S. P. & Venakides, S. Resonant transmission near nonrobust periodic slab modes. Phys. Rev. E 71, 026611 (2005)

    ADS  Google Scholar 

  50. Shen, J. T., Catrysse, P. B. & Fan, S. Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 94, 197401 (2005)

    ADS  CAS  PubMed  Google Scholar 

  51. Xie, Y., Zakharian, A. R., Moloney, J. V. & Mansuripur, M. Transmission of light through slit apertures in metallic films. Opt. Express 12, 6106–6121 (2004)

    ADS  PubMed  Google Scholar 

  52. Lee, K. G. & Park, Q.-H. Coupling of surface plasmon polaritons and light in metallic nanoslits. Phys. Rev. Lett. 95, 103902 (2005)

    ADS  CAS  PubMed  Google Scholar 

  53. Marquier, F., Greffet, J.-J., Collin, S., Pardo, F. & Pelouard, J. L. Resonant transmission through metallic film due to coupled modes. Opt. Express 13, 70–76 (2005)

    ADS  CAS  PubMed  Google Scholar 

  54. Skigin, D. C. & Depine, R. A. Transmission resonances of metallic compound gratings with subwavelength slits. Phys. Rev. Lett. 95, 217402 (2005)

    ADS  PubMed  Google Scholar 

  55. Kim, K. Y., Cho, Y. K., Tae, H. S. & Lee, J.-H. Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics. Opt. Express 14, 320–330 (2006)

    ADS  PubMed  Google Scholar 

  56. Liu, W.-C. & Tsai, D. P. Optical tunnelling effect of surface plasmon polaritons and localized surface plasmon resonance. Phys. Rev. B 65, 155423 (2005)

    ADS  Google Scholar 

  57. Garcia de Abajo, F. J., Saenz, J. J., Campillo, I. & Dolado, J. S. Site and lattice resonances in metallic hole arrays. Opt. Express 14, 7–18 (2006)

    ADS  CAS  PubMed  Google Scholar 

  58. Chang, S.-H., Gray, S. K. & Schatz, G. C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express 13, 3150–3165 (2005)

    ADS  PubMed  Google Scholar 

  59. Bravo-Abad, J., Garcia-Vidal, F. J. & Martin-Moreno, L. Resonant transmission of light through finite chains of subwavelength holes in a metallic film. Phys. Rev. Lett. 93, 227401 (2005)

    ADS  Google Scholar 

  60. Ghaemi, H. F., Thio, T., Grupp, D. E., Ebbesen, T. W. & Lezec, H. J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 58, 6779–6782 (1998)

    ADS  CAS  Google Scholar 

  61. Sun, Z., Jung, Y. S. & Kim, H. K. Role of surface plasmons in the optical interaction in metallic gratings with narrow slits. Appl. Phys. Lett. 83, 3021–3023 (2003)

    ADS  CAS  Google Scholar 

  62. Barnes, W. L., Murray, W. A., Dintinger, J., Devaux, E. & Ebbesen, T. W. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film. Phys. Rev. Lett. 92, 107401 (2004)

    ADS  CAS  PubMed  Google Scholar 

  63. Prikulis, J., Hanarp, P., Olofsson, L., Sutherland, D. & Kall, M. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett. 4, 1003–1007 (2004)

    ADS  CAS  Google Scholar 

  64. Klein Koerkamp, K. J., Enoch, S., Segerink, F. B., van Hulst, N. F. & Kuipers, L. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901 (2004)

    ADS  Google Scholar 

  65. Degiron, A. & Ebbesen, T. W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J. Opt. Pure Appl. Opt. 7, S90–S96 (2005)

    ADS  Google Scholar 

  66. Gordon, R. et al. Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 92, 037401 (2004)

    ADS  CAS  PubMed  Google Scholar 

  67. Ye, Y.-H. & Zhang, J.-Y. Enhanced light transmission through cascaded metal films perforated with periodic hole arrays. Opt. Lett. 30, 1521–1523 (2005)

    ADS  PubMed  Google Scholar 

  68. Krasavin, A. V. et al. Polarization conversion and “focusing” of light propagating through a small chiral hole in a metallic screen. Appl. Phys. Lett. 86, 201105 (2005)

    ADS  Google Scholar 

  69. Wang, Q.-J., Li, J.-Q., Huang, C.-P., Zhang, C. & Zhu, Y.-Y. Enhanced optical transmission through metal films with rotation-symmetrical hole arrays. Appl. Phys. Lett. 87, 091105 (2005)

    ADS  Google Scholar 

  70. Ropers, C. et al. Femtosecond light transmission and subradiant damping in plasmonic crystals. Phys. Rev. Lett. 94, 113901 (2005)

    ADS  CAS  PubMed  Google Scholar 

  71. Dogariu, A., Thio, T., Wang, L. J., Ebbesen, T. W. & Lezec, H. J. Delay in light transmission through small apertures. Opt. Lett. 26, 450–452 (2001)

    ADS  CAS  PubMed  Google Scholar 

  72. Halté, V., Benabbas, A., Guidoni, L. & Bigot, J.-Y. Femtosecond dynamics of the transmission of gold arrays of subwavelength holes. Phys. Status Solidi (b). 242, 1872–1876 (2005)

    Google Scholar 

  73. Dechant, A. & Elezzabi, A. Y. Femtosecond optical pulse propagation in subwavelength metallic slits. Appl. Phys. Lett. 84, 4678–4680 (2004)

    ADS  CAS  Google Scholar 

  74. Kwak, E.-S. et al. Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett. 5, 1963–1967 (2005)

    ADS  CAS  PubMed  Google Scholar 

  75. Kim, D. S. et al. Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. Phys. Rev. Lett. 91, 143901 (2003)

    ADS  CAS  PubMed  Google Scholar 

  76. Egorov, D., Dennis, B. S., Blumberg, G. & Haftel, M. I. Two-dimensional control of surface plasmons and directional beaming from arrays of subwavelength apertures. Phys. Rev. B 70, 033404 (2004)

    ADS  Google Scholar 

  77. Chyan, J. Y., Chang, C. A. & Yeh, J. A. Development and characterization of a broad-bandwidth polarization-insensitive subwavelength optical device. Nanotechnology 17, 40–44 (2006)

    ADS  CAS  Google Scholar 

  78. Schouten, H. F. et al. Plasmon-assisted two-slit transmission: Young’s experiment revisited. Phys. Rev. Lett. 94, 053901 (2005)

    ADS  CAS  PubMed  Google Scholar 

  79. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Polarization analysis of propagating surface plasmons in a subwavelength hole array. J. Opt. Soc. Am. B 20, 1927–1931 (2003)

    ADS  CAS  Google Scholar 

  80. Williams, S. M. et al. Use of the extraordinary infrared transmission of metallic subwavelength arrays to study the catalyzed reaction of methanol to formaldehyde on copper oxide. J. Phys. Chem. B 108, 11833–11837 (2004)

    CAS  Google Scholar 

  81. Brolo, A. G. et al. Enhanced fluorescence from arrays of nanoholes in a gold film. J. Am. Chem. Soc. 127, 14936–14941 (2005)

    CAS  PubMed  Google Scholar 

  82. Liu, Y., Bishop, J., Williams, L., Blair, S. & Herron, J. Biosensing based upon molecular confinement in a metallic nanocavity arrays. Nanotechnology 15, 1368–1374 (2004)

    ADS  CAS  Google Scholar 

  83. Brolo, A. G., Gordon, R., Leathem, B. & Kavanagh, K. L. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20, 4813–4815 (2004)

    CAS  PubMed  Google Scholar 

  84. Moran, C. E., Steele, J. M. & Halas, N. J. Chemical and dielectric manipulation of plasmonic band gap of metallodielectric arrays. Nano Lett. 4, 1497–1500 (2004)

    ADS  CAS  Google Scholar 

  85. Stark, P. R. H., Halleck, A. E. & Larson, D. N. Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. Methods 37, 37–47 (2005)

    CAS  PubMed  Google Scholar 

  86. Brolo, A. G., Arctander, E., Gordon, R., Leathem, B. & Kavanagh, K. L. Nanohole-enhanced Raman scattering. Nano Lett. 4, 2015–2018 (2004)

    ADS  CAS  Google Scholar 

  87. Williams, S. M. et al. Scaffolding for nanotechnology: extraordinary infrared transmission of microarrays for stacked sensors and surface spectroscopy. Nanotechnology 15, S495–S503 (2004)

    ADS  CAS  Google Scholar 

  88. Coe, J. V. et al. Extra IR transmission with metallic arrays of subwavelength holes. Anal. Chem. 78, 1385–1389 (2006)

    Google Scholar 

  89. Rindzevicius, T. et al. Plamsonic sensing characteristics of single nanometric holes. Nano Lett. 5, 2335–2339 (2005)

    ADS  CAS  PubMed  Google Scholar 

  90. Dintinger, J., Klein, S. & Ebbesen, T. W. Molecule–surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes and all-optical switching. Adv. Mat. 18, 1267–1270 (2006)

    CAS  Google Scholar 

  91. Gomez Rivas, J., Schotsch, C., Haring Bolivar, P. & Kurz, H. Enhanced transmission of Thz radiation through subwavelength holes. Phys. Rev. B 68, 201306(R) (2003)

    ADS  Google Scholar 

  92. Shou, X., Agrawal, A. & Nahata, A. Role of metal thickness on the enhanced transmission properties of a periodic array of subwavelength apertures. Opt. Express 13, 9834–9840 (2005)

    ADS  PubMed  Google Scholar 

  93. Lockyear, M. J., Hibbins, A. P. & Sambles, J. R. Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture. Appl. Phys. Lett. 84, 2040–2042 (2004)

    ADS  CAS  Google Scholar 

  94. Pendry, J. B., Martin-Moreno, L. & Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)

    ADS  CAS  PubMed  Google Scholar 

  95. Garcia-Vidal, F. J., Martin-Moreno, L. & Pendry, J. B. Surfaces with holes in them: new plasmonic metamaterials. J. Opt. Pure Appl. Opt. 7, S97–S101 (2005)

    ADS  Google Scholar 

  96. Lalanne, P. & Hugonin, J. P. Interaction between optical nano-objects at metallo-dielectric interfaces. Nature Phys. 2, 551–556 (2006)

    ADS  CAS  Google Scholar 

  97. Visser, T. D. Surface plasmons at work? Nature Phys. 2, 509–510 (2006)

    ADS  CAS  Google Scholar 

  98. Gruhlke, R., Hod, W. & Hall, D. Surface-plasmon cross coupling in molecular fluorescence near a corrugated thin film. Phys. Rev. Lett. 56, 2838–2841 (1986)

    ADS  CAS  PubMed  Google Scholar 

  99. Bonod, N., Enoch, S., Li, L., Popov, E. & Nevière, M. Resonant optical transmission through thin metallic films with and without holes. Opt. Express 11, 482–490 (2003)

    ADS  CAS  PubMed  Google Scholar 

  100. Liu, C., Kamaev, V. & Vardeny, Z. V. Efficency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array. Appl. Phys. Lett. 86, 143501 (2005)

    ADS  Google Scholar 

  101. Srituravanich, W., Fang, N., Sun, C., Luo, Q. & Zhang, X. Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004)

    ADS  CAS  Google Scholar 

  102. Luo, X. & Ishihara, T. Sub-100nm photolithography based on plasmon resonance. Jpn J. Appl. Phys. 43, 4017–4021 (2004)

    ADS  CAS  Google Scholar 

  103. Shao, D. B. & Che, S. C. Surface-plasmon-assisted nanoscale photolithography by polarized light. Appl. Phys. Lett. 86, 253107 (2005)

    ADS  Google Scholar 

  104. Kim, T. J., Thio, T., Ebbesen, T. W., Grupp, D. E. & Lezec, H. J. Control of optical transmission through metals perforated with subwavelength hole arrays. Opt. Lett. 24, 256–258 (1999)

    ADS  CAS  PubMed  Google Scholar 

  105. Dintinger, J., Robel, I., Kamat, P. V., Genet, C. & Ebbesen, T. W. Terahertz all-optical molecule-plasmon modulation. Adv. Mater. 18, 1645–1648 (2006)

    CAS  Google Scholar 

  106. Altewisher, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002)

    ADS  Google Scholar 

  107. Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005)

    ADS  PubMed  Google Scholar 

  108. Moreno, E., Fernandez-Dominguez, A. I., Cirac, I. J., Garcia-Vidal, F. J. & Martin-Moreno, L. Resonant transmission of cold atoms through subwavelength apertures. Phys. Rev. Lett. 95, 170406 (2005)

    ADS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research was supported by the European Community, Network of Excellence PLASMO-NANO-DEVICES, STREP SPP, the ANR grant COEXUS, the CNRS, and the French Ministry of Higher Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Ebbesen.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genet, C., Ebbesen, T. Light in tiny holes. Nature 445, 39–46 (2007). https://doi.org/10.1038/nature05350

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05350

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing