Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The twisted ion-permeation pathway of a resting voltage-sensing domain

Abstract

Proteins containing voltage-sensing domains (VSDs) translate changes in membrane potential into changes in ion permeability or enzymatic activity1,2,3. In channels, voltage change triggers a switch in conformation of the VSD, which drives gating in a separate pore domain, or, in channels lacking a pore domain, directly gates an ion pathway within the VSD4,5. Neither mechanism is well understood6. In the Shaker potassium channel, mutation of the first arginine residue of the S4 helix to a smaller uncharged residue makes the VSD permeable to ions (‘omega current’) in the resting conformation (‘S4 down’)7. Here we perform a structure-guided perturbation analysis of the omega conductance to map its VSD permeation pathway. We find that there are four omega pores per channel, which is consistent with one conduction path per VSD. Permeating ions from the extracellular medium enter the VSD at its peripheral junction with the pore domain, and then plunge into the core of the VSD in a curved conduction pathway. Our results provide a model of the resting conformation of the VSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perturbation of omega current by mutation and MTS modification.
Figure 2: Alpha and omega pores in the BOM channel.
Figure 3: Impact of side-chain manipulations on omega current amplitude.
Figure 4: The omega pathway in the resting VSD.

Similar content being viewed by others

References

  1. Yu, F. H. & Catterall, W. A. The VGL-chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Sci. STKE 2004, re15 (2004)

    PubMed  Google Scholar 

  2. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    Article  CAS  Google Scholar 

  3. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Ramsey, I. S., Moran, M. M., Chong, J. A. & Clapham, D. E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Tombola, F., Pathak, M. M. & Isacoff, E. Y. How does voltage open an ion channel? Annu. Rev. Cell Dev. Biol. 22, 23–52 (2006)

    Article  CAS  Google Scholar 

  7. Tombola, F., Pathak, M. M. & Isacoff, E. Y. Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45, 379–388 (2005)

    Article  CAS  Google Scholar 

  8. Long, S. B., Campbell, E. B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Sigworth, F. J. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. (Lond.) 307, 97–129 (1980)

    Article  CAS  Google Scholar 

  10. Gandhi, C. S., Clark, E., Loots, E., Pralle, A. & Isacoff, E. Y. The orientation and molecular movement of a K+ channel voltage-sensing domain. Neuron 40, 515–525 (2003)

    Article  CAS  Google Scholar 

  11. Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron 16, 387–397 (1996)

    Article  CAS  Google Scholar 

  12. Yang, N., George, A. L. & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996)

    Article  Google Scholar 

  13. Yusaf, S. P., Wray, D. & Sivaprasadarao, A. Measurement of the movement of the S4 segment during the activation of a voltage-gated potassium channel. Pflugers Arch. 433, 91–97 (1996)

    Article  CAS  Google Scholar 

  14. Ruta, V., Chen, J. & MacKinnon, R. Calibrated measurement of gating-charge arginine displacement in the KvAP voltage-dependent K+ channel. Cell 123, 463–475 (2005)

    Article  CAS  Google Scholar 

  15. Cha, A., Snyder, G. E., Selvin, P. R. & Bezanilla, F. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402, 809–813 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Glauner, K. S., Mannuzzu, L. M., Gandhi, C. S. & Isacoff, E. Y. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402, 813–817 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Durell, S. R., Shrivastava, I. H. & Guy, H. R. Models of the structure and voltage-gating mechanism of the shaker K+ channel. Biophys. J. 87, 2116–2130 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Yarov-Yarovoy, V., Baker, D. & Catterall, W. A. Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels. Proc. Natl Acad. Sci. USA 103, 7292–7297 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Lee, S. Y. & MacKinnon, R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430, 232–235 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Phillips, L. R. et al. Voltage-sensor activation with a tarantula toxin as cargo. Nature 436, 857–860 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Chanda, B., Asamoah, O. K., Blunck, R., Roux, B. & Bezanilla, F. Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement. Nature 436, 852–856 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Starace, D. M. & Bezanilla, F. A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427, 548–553 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Islas, L. D. & Sigworth, F. J. Electrostatics and the gating pore of Shaker potassium channels. J. Gen. Physiol. 117, 69–89 (2001)

    Article  CAS  Google Scholar 

  24. Ahern, C. A. & Horn, R. Focused electric field across the voltage sensor of potassium channels. Neuron 48, 25–29 (2005)

    Article  CAS  Google Scholar 

  25. Minor, D. L. A sensitive channel family replete with sense and motion. Nature Struct. Mol. Biol. 13, 388–390 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Wiese for valuable technical assistance, S. Chakravarthy for help with PyMOL, H. P. Larsson for advice about fluctuation analysis, V. Yarov-Yarovoy for the PDB coordinates of the ROSETTA model of KV1.2 and for helpful discussion, and S. Kohout and S. Bell for critical comments on the manuscripts. This work was supported by the National Institutes of Health and by a postdoctoral fellowship from the American Heart Association Western States Affiliate (F.T.). P.G. was supported by postdoctoral fellowships from the Generalitat de Catalunya and the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Y. Isacoff.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes and Data, Supplementary Figures 1-6 with legends, Supplementary Methods and additional references (PDF 1050 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tombola, F., Pathak, M., Gorostiza, P. et al. The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445, 546–549 (2007). https://doi.org/10.1038/nature05396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05396

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing