Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The receptors and cells for mammalian taste

Abstract

The emerging picture of taste coding at the periphery is one of elegant simplicity. Contrary to what was generally believed, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes: sweet, sour, bitter, salty and umami. Importantly, receptor cells for each taste quality function as dedicated sensors wired to elicit stereotypic responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Taste-receptor cells, buds and papillae.
Figure 2: Encoding of taste qualities at the periphery.
Figure 3: Sweet, umami, bitter and sour are mediated by specific receptors and cells.
Figure 4: Summary of receptors for umami, sweet, bitter and sour tastes.
Figure 5: Behavioural attraction and aversion are mediated by dedicated taste-receptor cells.

Similar content being viewed by others

References

  1. Smith, D. V. & St John, S. J. Neural coding of gustatory information. Curr. Opin. Neurobiol. 9, 427–435 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Erickson, R. P., Covey, E. & Doetsch, G. S. Neuron and stimulus typologies in the rat gustatory system. Brain Res. 196, 513–519 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Erickson, R. P. The evolution of neural coding ideas in the chemical senses. Physiol. Behav. 69, 3–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Caicedo, A., Kim, K. N. & Roper, S. D. Individual mouse taste cells respond to multiple chemical stimuli. J. Physiol. (Lond.) 544, 501–509 (2002).

    Article  CAS  Google Scholar 

  5. Smith, D. V., John, S. J. & Boughter, J. D. Neuronal cell types and taste quality coding. Physiol. Behav. 69, 77–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Hoon, M. A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96, 541–551 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Bachmanov, A. A. et al. Positional cloning of the mouse saccharin preference (Sac) locus. Chem. Senses 26, 925–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Nelson, G. et al. An amino-acid taste receptor. Nature 416, 199–202 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Li, X. et al. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA 99, 4692–4696 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kitagawa, M., Kusakabe, Y., Miura, H., Ninomiya, Y. & Hino, A. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem. Biophys. Res. Commun. 283, 236–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Max, M. et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nature Genet. 28, 58–63 (2001).

    CAS  PubMed  Google Scholar 

  13. Montmayeur, J. P., Liberles, S. D., Matsunami, H. & Buck, L. B. A candidate taste receptor gene near a sweet taste locus. Nature Neurosci. 4, 492–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sainz, E., Korley, J. N., Battey, J. F. & Sullivan, S. L. Identification of a novel member of the T1R family of putative taste receptors. J. Neurochem. 77, 896–903 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, G. Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Pin, J. P. & Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Targets CNS Neurol. Disord. 1, 297–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Fuller, J. L. Single-locus control of saccharin preference in mice. J. Hered. 65, 33–36 (1974).

    Article  CAS  PubMed  Google Scholar 

  19. Lush, I. E. The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. Genet. Res. 53, 95–99 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Li, X. et al. High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4. Mamm. Genome 12, 13–16 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Danilova, V., Hellekant, G., Tinti, J. M. & Nofre, C. Gustatory responses of the hamster Mesocricetus auratus to various compounds considered sweet by humans. J. Neurophysiol. 80, 2102–2112 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, H. et al. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc. Natl Acad. Sci. USA 101, 14258–14263 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, P. et al. Molecular mechanisms of sweet receptor function. Chem. Senses 30 (Suppl. 1), i17–i18 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, P. et al. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J. Biol. Chem. 279, 45068–45075 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Damak, S. et al. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301, 850–853 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Li, X. et al. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar. PLoS Genet. 1, 27–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Iwasaki, K., Kasahara, T. & Sato, M. Gustatory effectiveness of amino acids in mice: behavioral and neurophysiological studies. Physiol. Behav. 34, 531–542 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Iwasaki, K. & Sato, M. A. Taste preferences for amino acids in the house musk shrew, Suncus murinus. Physiol. Behav. 28, 829–833 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Pritchard, T. C. & Scott, T. R. Amino acids as taste stimuli. I. Neural and behavioral attributes. Brain Res. 253, 81–92 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. Ikeda, K. New seasonings. Chem. Senses 27, 847–849 (2002).

    Article  PubMed  Google Scholar 

  31. Yamaguchi, S. The synergistic taste effect of monosodium glutamate and disodium 5′-inosinate. J. Food Sci. 32, 473–478 (1967).

    Article  CAS  Google Scholar 

  32. Adler, E. et al. A novel family of mammalian taste receptors. Cell 100, 693–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Matsunami, H., Montmayeur, J. P. & Buck, L. B. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Lush, I. E. & Holland, G. The genetics of tasting in mice. V. Glycine and cycloheximide. Genet. Res. 52, 207–212 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Reed, D. R. et al. Localization of a gene for bitter-taste perception to human chromosome 5p15. Am. J. Hum. Genet. 64, 1478–1480 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chandrashekar, J. et al. T2Rs function as bitter taste receptors. Cell 100, 703–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Bufe, B., Hofmann, T., Krautwurst, D., Raguse, J. D. & Meyerhof, W. The human TAS2R16 receptor mediates bitter taste in response to β-glucopyranosides. Nature Genet. 32, 397–401 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Pronin, A. N., Tang, H., Connor, J. & Keung, W. Identification of ligands for two human bitter T2R receptors. Chem. Senses 29, 583–593 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Kuhn, C. et al. Bitter taste receptors for saccharin and acesulfame K. J. Neurosci. 24, 10260–10265 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Behrens, M. et al. The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochem. Biophys. Res. Commun. 319, 479–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Wooding, S. et al. Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature 440, 930–934 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Kim, U. K. et al. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299, 1221–1225 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Mueller, K. L. et al. The receptors and coding logic for bitter taste. Nature 434, 225–229 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Shi, P. & Zhang, J. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol. Biol. Evol. 23, 292–300 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Go, Y., Satta, Y., Takenaka, O. & Takahata, N. Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170, 313–326 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Spector, A. C. & Kopka, S. L. Rats fail to discriminate quinine from denatonium: implications for the neural coding of bitter-tasting compounds. J. Neurosci. 22, 1937–1941 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaudhari, N. & Roper, S. D. Molecular and physiological evidence for glutamate (umami) taste transduction via a G protein-coupled receptor. Ann. NY Acad. Sci. 855, 398–406 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Kinnamon, S. C. A plethora of taste receptors. Neuron 25, 507–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Smith, D. V. & Margolskee, R. F. Making sense of taste. Sci. Am. 284, 32–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Brunet, L. J., Gold, G. H. & Ngai, J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17, 681–693 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Damak, S. et al. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem. Senses 31, 253–264 (2006).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  53. McLaughlin, S. K., McKinnon, P. J. & Margolskee, R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Kusakabe, Y. et al. Comprehensive study on G protein α-subunits in taste bud cells, with special reference to the occurrence of Gαi2 as a major Gα species. Chem. Senses 25, 525–531 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Huang, L. et al. Gγ13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nature Neurosci. 2, 1055–1062 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Rossler, P., Kroner, C., Freitag, J., Noe, J. & Breer, H. Identification of a phospholipase C β subtype in rat taste cells. Eur. J. Cell Biol. 77, 253–261 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nature Neurosci. 5, 1169–1176 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Wong, G. T., Gannon, K. S. & Margolskee, R. F. Transduction of bitter and sweet taste by gustducin. Nature 381, 796–800 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Ruiz, C. J., Wray, K., Delay, E., Margolskee, R. F. & Kinnamon, S. C. Behavioral evidence for a role of α-gustducin in glutamate taste. Chem. Senses 28, 573–579 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Dotson, C. D., Roper, S. D. & Spector, A. C. PLCβ2-independent behavioral avoidance of prototypical bitter-tasting ligands. Chem. Senses 30, 593–600 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Varkevisser, B. & Kinnamon, S. C. Sweet taste transduction in hamster: role of protein kinases. J. Neurophysiol. 83, 2526–2532 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Rosenzweig, S., Yan, W., Dasso, M. & Spielman, A. I. Possible novel mechanism for bitter taste mediated through cGMP. J. Neurophysiol. 81, 1661–1665 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Bernhardt, S. J., Naim, M., Zehavi, U. & Lindemann, B. Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J. Physiol. (Lond.) 490, 325–336 (1996).

    Article  CAS  Google Scholar 

  64. Striem, B. J., Pace, U., Zehavi, U., Naim, M. & Lancet, D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem. J. 260, 121–126 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gilbertson, T. A. & Boughter, J. D. Taste transduction: appetizing times in gustation. Neuroreport 14, 905–911 (2003).

    CAS  PubMed  Google Scholar 

  66. Avenet, P., Hofmann, F. & Lindemann, B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature 331, 351–354 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Heck, G. L., Mierson, S. & DeSimone, J. A. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223, 403–405 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Avenet, P. & Lindemann, B. Amiloride-blockable sodium currents in isolated taste receptor cells. J. Membr. Biol. 105, 245–255 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Lyall, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. (Lond.) 558, 147–159 (2004).

    Article  CAS  Google Scholar 

  71. Stevens, D. R. et al. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413, 631–635 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Ugawa, S. et al. Receptor that leaves a sour taste in the mouth. Nature 395, 555–556 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Lin, W., Burks, C. A., Hansen, D. R., Kinnamon, S. C. & Gilbertson, T. A. Taste receptor cells express pH-sensitive leak K+ channels. J. Neurophysiol. 92, 2909–2919 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Richter, T. A., Dvoryanchikov, G. A., Chaudhari, N. & Roper, S. D. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J. Neurophysiol. 92, 1928–1936 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Lyall, V. et al. Basolateral Na+–H+ exchanger-1 in rat taste receptor cells is involved in neural adaptation to acidic stimuli. J. Physiol. (Lond.) 556, 159–173 (2004).

    Article  CAS  Google Scholar 

  77. Cummings, T. A. & Kinnamon, S. C. Apical K+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli. J. Gen. Physiol. 99, 591–613 (1992).

    Article  CAS  PubMed  Google Scholar 

  78. Huang, A. L. et al. The cells and logic for mammalian sour taste detection. Nature 442, 934–938 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lopezjimenez, N. D. et al. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 98, 68–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Ishimaru, Y. et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc. Natl Acad. Sci. USA 103, 12569–12574 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lahiri, S. & Forster, R. E. CO2/H+ sensing: peripheral and central chemoreception. Int. J. Biochem. Cell Biol. 35, 1413–1435 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Vigh, B. et al. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol. Histopathol. 19, 607–628 (2004).

    CAS  PubMed  Google Scholar 

  83. Gilbertson, T. A., Boughter, J. D., Zhang, H. & Smith, D. V. Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J. Neurosci. 21, 4931–4941 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sato, T. & Beidler, L. M. Broad tuning of rat taste cells for four basic taste stimuli. Chem. Senses 22, 287–293 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Richter, T. A., Caicedo, A. & Roper, S. D. Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J. Physiol. (Lond.) 547, 475–483 (2003).

    Article  CAS  Google Scholar 

  86. Redfern, C. H. et al. Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nature Biotechnol. 17, 165–169 (1999).

    Article  CAS  Google Scholar 

  87. Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Sugita, M. & Shiba, Y. Genetic tracing shows segregation of taste neuronal circuitries for bitter and sweet. Science 309, 781–785 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Zou, Z., Horowitz, L. F., Montmayeur, J. P., Snapper, S. & Buck, L. B. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–179 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Kuze, B., Matsuyama, K., Matsui, T., Miyata, H. & Mori, S. Segment-specific branching patterns of single vestibulospinal tract axons arising from the lateral vestibular nucleus in the cat: A PHA-L tracing study. J. Comp. Neurol. 414, 80–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Rolls, E. T. The Brain and Emotion (Oxford Univ. Press, USA, 2000).

    Book  Google Scholar 

  92. Katz, D. B., Simon, S. A. & Nicolelis, M. A. Dynamic and multimodal responses of gustatory cortical neurons in awake rats. J. Neurosci. 21, 4478–4489 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Di Lorenzo, P. M. The neural code for taste in the brain stem: response profiles. Physiol. Behav. 69, 87–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Spector, A. C. & Travers, S. P. The representation of taste quality in the mammalian nervous system. Behav. Cogn. Neurosci. Rev. 4, 143–191 (2005).

    Article  PubMed  Google Scholar 

  95. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  96. Choi, G. B. et al. Lhx6 delineates a pathway mediating innate reproductive behaviors from the amygdala to the hypothalamus. Neuron 46, 647–660 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Miesenbock, G. & Kevrekidis, I. G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Gosgnach, S. et al. V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440, 215–219 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  99. Gogos, J. A., Osborne, J., Nemes, A., Mendelsohn, M. & Axel, R. Genetic ablation and restoration of the olfactory topographic map. Cell 103, 609–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Brecht, M. et al. Novel approaches to monitor and manipulate single neurons in vivo. J. Neurosci. 24, 9223–9227 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank a group of extraordinary students, postdoctoral fellows and research technicians in our laboratories, who joined us on this wonderful journey of mammalian taste research beginning in the fall of 1997. N.J.P.R. is an investigator in the Intramural program at the NIH, NIDCR. C.S.Z. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas J. P. Ryba or Charles S. Zuker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrashekar, J., Hoon, M., Ryba, N. et al. The receptors and cells for mammalian taste. Nature 444, 288–294 (2006). https://doi.org/10.1038/nature05401

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05401

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing