Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intrinsic functional architecture in the anaesthetized monkey brain

Abstract

The traditional approach to studying brain function is to measure physiological responses to controlled sensory, motor and cognitive paradigms. However, most of the brain’s energy consumption is devoted to ongoing metabolic activity not clearly associated with any particular stimulus or behaviour1. Functional magnetic resonance imaging studies in humans aimed at understanding this ongoing activity have shown that spontaneous fluctuations of the blood-oxygen-level-dependent signal occur continuously in the resting state. In humans, these fluctuations are temporally coherent within widely distributed cortical systems that recapitulate the functional architecture of responses evoked by experimentally administered tasks2,3,4,5,6. Here, we show that the same phenomenon is present in anaesthetized monkeys even at anaesthetic levels known to induce profound loss of consciousness. We specifically demonstrate coherent spontaneous fluctuations within three well known systems (oculomotor, somatomotor and visual) and the ‘default’ system, a set of brain regions thought by some to support uniquely human capabilities. Our results indicate that coherent system fluctuations probably reflect an evolutionarily conserved aspect of brain functional organization that transcends levels of consciousness.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BOLD correlation maps obtained at two levels of isoflurane anaesthesia in one monkey.
Figure 2: Cortical patterns of coherent spontaneous BOLD fluctuations are similar to those of task-evoked responses and anatomical connectivity.
Figure 3: Spontaneous BOLD correlations are topographically organized in the visual cortex of anaesthetized monkeys ( N = 8).
Figure 4: Significant voxel-wise correlations of the pC/PCC in monkey and human.

Similar content being viewed by others

References

  1. Raichle, M. E. & Mintun, M. A. Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449–476 (2006)

    Article  CAS  Google Scholar 

  2. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)

    Article  CAS  Google Scholar 

  3. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102, 9673–9678 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Vincent, J. L. et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531 (2006)

    Article  Google Scholar 

  7. Morcom, A. M. & Fletcher, P. C. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage (in the press)

  8. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl Acad. Sci. USA 103, 10046–10051 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Baker, J. T., Patel, G. H., Corbetta, M. & Snyder, L. H. Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades. Cereb. Cortex 16, 447–459 (2006)

    Article  Google Scholar 

  10. Lewis, J. W. & Van Essen, D. C. Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. J. Comp. Neurol. 428, 112–137 (2000)

    Article  CAS  Google Scholar 

  11. Maunsell, J. H. & Van Essen, D. C. Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundries. J. Comp. Neurol. 266, 535–555 (1987)

    Article  CAS  Google Scholar 

  12. Van Essen, D. C., Newsome, W. T. & Bixby, J. L. The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J. Neurosci. 2, 265–283 (1982)

    Article  CAS  Google Scholar 

  13. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Saxe, R. & Kanwisher, N. People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19, 1835–1842 (2003)

    Article  CAS  Google Scholar 

  15. Vogeley, K. & Fink, G. R. Neural correlates of the first-person-perspective. Trends Cogn. Sci. 7, 38–42 (2003)

    Article  Google Scholar 

  16. Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. & Cohen, J. D. An fMRI investigation of emotional engagement in moral judgment. Science 293, 2105–2108 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005)

    Article  Google Scholar 

  18. Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: Common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377 (2007)

    Article  Google Scholar 

  19. Tulving, E. in The Missing Link in Cognition: Origins of Self-Reflective Consciousness (eds Terrace, H. S. & Metcalfe, J.) 3–56 (Oxford Univ. Press, New York, 2005).

  20. Suzuki, W. A. & Amaral, D. G. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350, 497–533 (1994)

    Article  CAS  Google Scholar 

  21. Karnath, H.-O. New insights into the functions of the superior temporal cortex. Nature Rev. Neurosci. 2, 568–576 (2001)

    Article  CAS  Google Scholar 

  22. Brodmann, K. Localisation in the Cerebral Cortex (Smith-Gordon, London, 1994)

    Google Scholar 

  23. MacLean, J. N., Watson, B. O., Aaron, G. B. & Yuste, R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48, 811–823 (2005)

    Article  CAS  Google Scholar 

  24. Llinas, R. I of the Vortex: From Neurons to Self (MIT Press, Cambridge, Massachusetts, 2001)

    Book  Google Scholar 

  25. Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)

    Article  ADS  CAS  Google Scholar 

  26. Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. Spontaneously emerging cortical representations of visual attributes. Nature 425, 954–956 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Raichle, M. E. Neuroscience. The brain’s dark energy. Science 314, 1249–1250 (2006)

    Article  CAS  Google Scholar 

  28. Fiser, J., Chiu, C. & Weliky, M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431, 573–578 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 24, 429–448 (1984)

    Article  CAS  Google Scholar 

  30. Gattass, R., Sousa, A. P. & Gross, C. G. Visuotopic organization and extent of V3 and V4 of the macaque. J. Neurosci. 8, 1831–1845 (1988)

    Article  CAS  Google Scholar 

  31. Black, K. J., Koller, J. M., Snyder, A. Z. & Perlmutter, J. S. Atlas template images for nonhuman primate neuroimaging: baboon and macaque. Methods Enzymol. 385, 91–102 (2004)

    Article  Google Scholar 

  32. Black, K. J., Koller, J. M. & Perlmutter, J. S. Template images for neuroimaging in Macaca fascicularis. Program No. 454.18. Abstract Viewer and Itinerary Planner 〈http://www.purl.org/net/kbmd/cyno〉 (Society for Neuroscience, Washington DC, 2005)

  33. Vincent, J. L., Larson-Prior, L. J., Zempel, J. M. & Snyder, A. Z. Moving GLM ballistocardiogram artifact reduction for EEG data acquired simultaneously with fMRI. Clin. Neurophysiol. 118, 981–998 (2007)

    Article  Google Scholar 

  34. Ojemann, J. G. et al. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6, 156–167 (1997)

    Article  CAS  Google Scholar 

  35. Martin, R. F. & Bowden, D. M. Primate Brain Maps: Structure of the Macaque Brain (Elsevier, Amsterdam, 2000)

    Google Scholar 

  36. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical Publishers, New York, 1988)

    Google Scholar 

  37. Lancaster, J. L. et al. A modality-independent approach to spatial normalization of tomographic images of the human brain. Hum. Brain Mapp. 3, 209–223 (1995)

    Article  Google Scholar 

  38. Lewis, J. W. & Van Essen, D. C. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111 (2000)

    Article  CAS  Google Scholar 

  39. Shulman, G. L. et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997)

    Article  CAS  Google Scholar 

  40. Zar, J. H. Biostatistical Analysis (Prentice-Hall, Upper Saddle River, New Jersey, 1996)

    Google Scholar 

  41. Jenkins, G. M. & Watts, D. G. Spectral Analysis and its Applications (Emerson-Adams Press, Boca Raton, 1968)

    MATH  Google Scholar 

  42. Buckner, R. L. et al. A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23, 724–738 (2004)

    Article  Google Scholar 

  43. Van Essen, D. C. et al. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. L. Price, J. S. Perlmutter and G. C. DeAngelis for discussion and for allowing us to scan their monkeys; L. J. Larson-Prior for providing the human data; J. Harwell for Caret software enhancements used in data analysis; and K. J. Black for providing the monkey atlas target. Grants from the US National Institute of Health, US National Science Foundation, Washington University Silvio Conte Center, and Mallinckrodt Institute of Radiology supported these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Raichle.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures 1-7 with Legends and additional references. (PDF 598 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, J., Patel, G., Fox, M. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007). https://doi.org/10.1038/nature05758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05758

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing