Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins

Abstract

All animals and plants dynamically attach and remove O-linked β-N-acetylglucosamine (O-GlcNAc) at serine and threonine residues on myriad nuclear and cytoplasmic proteins. O-GlcNAc cycling, which is tightly regulated by the concerted actions of two highly conserved enzymes, serves as a nutrient and stress sensor. On some proteins, O-GlcNAc competes directly with phosphate for serine/threonine residues. Glycosylation with O-GlcNAc modulates signalling, and influences protein expression, degradation and trafficking. Emerging data indicate that O-GlcNAc glycosylation has a role in the aetiology of diabetes and neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: O-GlcNAcylation cycles on a timescale and in a manner similar to phosphorylation.
Figure 2: Many proteins from almost all functional classes are O-GlcNAcylated.
Figure 3: There is a complex and dynamic interplay between O-GlcNAc and O-phosphate.
Figure 4: The dynamic interplay between O-GlcNAc and O-phosphate enables the rapid generation of enormous molecular diversity in response to cellular stimuli.

References

  1. Torres, C. R. & Hart, G. W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984).

    CAS  PubMed  Google Scholar 

  2. Hart, G. W., Haltiwanger, R. S., Holt, G. D. & Kelly, W. G. Glycosylation in the nucleus and cytoplasm. Annu. Rev. Biochem. 58, 841–874 (1989).

    Article  CAS  Google Scholar 

  3. Holt, G. D. & Hart, G. W. The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein–saccharide linkage, O-linked GlcNAc. J. Biol. Chem. 261, 8049–8057 (1986).

    CAS  PubMed  Google Scholar 

  4. Hart, G. W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem. 66, 315–335 (1997).

    Article  CAS  Google Scholar 

  5. Wells, L., Vosseller, K. & Hart, G. W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Love, D. C. & Hanover, J. A. The hexosamine signaling pathway: deciphering the 'O-GlcNAc code'. Sci. STKE 2005, re13 (2005).

    PubMed  Google Scholar 

  7. Zachara, N. E. & Hart, G. W. Cell signaling, the essential role of O-GlcNAc! Biochim. Biophys. Acta 1761, 599–617 (2006).

    Article  CAS  Google Scholar 

  8. Slawson, C., Housley, M. P. & Hart, G. W. O-GlcNAc cycling: how a single sugar post-translational modification is changing the way we think about signaling networks. J. Cell. Biochem. 97, 71–83 (2006).

    Article  CAS  Google Scholar 

  9. McClain, D. A. & Crook, E. D. Hexosamines and insulin resistance. Diabetes 45, 1003–1009 (1996).

    Article  CAS  Google Scholar 

  10. Greis, K. D. & Hart, G. W. Analytical methods for the study of O-GlcNAc glycoproteins and glycopeptides. Methods Mol. Biol. 76, 19–33 (1998).

    CAS  PubMed  Google Scholar 

  11. Stubbs, K. A., Zhang, N. & Vocadlo, D. J. A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase. Org. Biomol. Chem. 4, 839–845 (2006).

    Article  CAS  Google Scholar 

  12. Horsch, M., Hoesch, L., Vasella, A. & Rast, D. M. N-acetylglucosaminono-1,5-lactone oxime and the corresponding (phenylcarbamoyl)oxime. Novel and potent inhibitors of beta-N-acetylglucosaminidase. Eur. J. Biochem. 197, 815–818 (1991).

    Article  CAS  Google Scholar 

  13. Comer, F. I., Vosseller, K., Wells, L., Accavitti, M. A. & Hart, G. W. Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine. Anal. Biochem. 293, 169–177 (2001).

    Article  CAS  Google Scholar 

  14. Syka, J. E., Coon, J. J., Schroeder, M. J., Shabanowitz, J. & Hunt, D. F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl Acad. Sci. USA 101, 9528–9533 (2004).

    Article  ADS  CAS  Google Scholar 

  15. Vocadlo, D. J., Hang, H. C., Kim, E. J., Hanover, J. A. & Bertozzi, C. R. A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc. Natl Acad. Sci. USA 100, 9116–9121 (2003).

    Article  ADS  CAS  Google Scholar 

  16. Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

    Article  MathSciNet  CAS  Google Scholar 

  17. Hartweck, L. M., Genger, R. K., Grey, W. M. & Olszewski, N. E. SECRET AGENT and SPINDLY have overlapping roles in the development of Arabidopsis thaliana L. Heyn. J. Exp. Bot. 57, 865–875 (2006).

    Article  CAS  Google Scholar 

  18. Kreppel, L. K., Blomberg, M. A. & Hart, G. W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997).

    Article  CAS  Google Scholar 

  19. Lubas, W. A., Frank, D. W., Krause, M. & Hanover, J. A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316–9324 (1997).

    Article  CAS  Google Scholar 

  20. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl Acad. Sci. USA 97, 5735–5739 (2000).

    Article  ADS  CAS  Google Scholar 

  21. O'Donnell, N., Zachara, N. E., Hart, G. W. & Marth, J. D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680–1690 (2004).

    Article  CAS  Google Scholar 

  22. Hanover, J. A. et al. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc. Natl Acad. Sci. USA 102, 11266–11271 (2005).

    Article  ADS  CAS  Google Scholar 

  23. Forsythe, M. E. et al. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc. Natl Acad. Sci. USA 103, 11952–11957 (2006).

    Article  ADS  CAS  Google Scholar 

  24. Rechsteiner, M. & Rogers, S. W. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267–271 (1996).

    Article  CAS  Google Scholar 

  25. Kamemura, K., Hayes, B. K., Comer, F. I. & Hart, G. W. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of Thr-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J. Biol. Chem. 277, 19229–19235 (2002).

    Article  CAS  Google Scholar 

  26. Cheng, X., Cole, R. N., Zaia, J. & Hart, G. W. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 39, 11609–11620 (2000).

    Article  CAS  Google Scholar 

  27. Medina, L., Grove, K. & Haltiwanger, R. S. SV40 large T antigen is modified with O-linked N-acetylglucosamine but not with other forms of glycosylation. Glycobiology 8, 383–391 (1998).

    Article  CAS  Google Scholar 

  28. Du, X. L. et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J. Clin. Invest. 108, 1341–1348 (2001).

    Article  CAS  Google Scholar 

  29. Yang, W. H. et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nature Cell Biol. 8, 1074–1083 (2006).

    Article  CAS  Google Scholar 

  30. Cole, R. N. & Hart, G. W. Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. J. Neurochem. 73, 418–428 (1999).

    Article  CAS  Google Scholar 

  31. Comer, F. I. & Hart, G. W. Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II. Biochemistry 40, 7845–7852 (2001).

    Article  CAS  Google Scholar 

  32. Chou, C. F., Smith, A. J. & Omary, M. B. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J. Biol. Chem. 267, 3901–3906 (1992).

    CAS  PubMed  Google Scholar 

  33. Wells, L., Kreppel, L. K., Comer, F. I., Wadzinski, B. E. & Hart, G. W. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunit. J. Biol. Chem. 279, 38466–38470 (2004).

    Article  CAS  Google Scholar 

  34. Chou, T.-Y., Hart, G. W. & Dang, C. V. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J. Biol. Chem. 270, 18961–18965 (1995).

    Article  CAS  Google Scholar 

  35. Cheng, X. G. & Hart, G. W. Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor β. Post-translational regulation of turnover and transactivation activity. J. Biol. Chem. 276, 10570–10575 (2001).

    Article  CAS  Google Scholar 

  36. Zhang, Z. et al. A new strategy for the synthesis of glycoproteins. Science 303, 371–373 (2004).

    Article  ADS  CAS  Google Scholar 

  37. Kelly, W. G., Dahmus, M. E. & Hart, G. W. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem. 268, 10416–10424 (1993).

    CAS  PubMed  Google Scholar 

  38. Haltiwanger, R. S., Blomberg, M. A. & Hart, G. W. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 267, 9005–9013 (1992).

    CAS  PubMed  Google Scholar 

  39. Hanover, J. A. et al. Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch. Biochem. Biophys. 409, 287–297 (2003).

    Article  CAS  Google Scholar 

  40. Wrabl, J. O. & Grishin, N. V. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J. Mol. Biol. 314, 365–374 (2001).

    Article  CAS  Google Scholar 

  41. Jinek, M. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α. Nature Struct. Mol. Biol. 11, 1001–1008 (2004).

    Article  CAS  Google Scholar 

  42. Cohen, P. T. W. Protein phosphatase 1 — targeted in many directions. J. Cell Sci. 115, 241–256 (2002).

    CAS  PubMed  Google Scholar 

  43. Yang, X., Zhang, F. & Kudlow, J. E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69–80 (2002).

    Article  CAS  Google Scholar 

  44. Iyer, S. P., Akimoto, Y. & Hart, G. W. Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J. Biol. Chem. 278, 5399–5409 (2003).

    Article  CAS  Google Scholar 

  45. Braidman, I. et al. Characterisation of human N-acetyl-beta-hexosaminidase C. FEBS Lett. 41, 181–184 (1974).

    Article  CAS  Google Scholar 

  46. Gao, Y., Wells, L., Comer, F. I., Parker, G. J. & Hart, G. W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838–9845 (2001).

    Article  CAS  Google Scholar 

  47. Heckel, D. et al. Novel immunogenic antigen homologous to hyaluronidase in meningioma. Hum. Mol. Genet. 7, 1859–1872 (1998).

    Article  CAS  Google Scholar 

  48. Toleman, C., Paterson, A. J., Whisenhunt, T. R. & Kudlow, J. E. Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J. Biol. Chem. 279, 53665–53673 (2004).

    Article  CAS  Google Scholar 

  49. Wells, L. et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic β-N-acetylglucosaminidase, O-GlcNAcase. J. Biol. Chem. 277, 1755–1761 (2002).

    Article  Google Scholar 

  50. Zhu, W., Leber, B. & Andrews, D. W. Cytoplasmic O-glycosylation prevents cell surface transport of E-cadherin during apoptosis. EMBO J. 20, 5999–6007 (2001).

    Article  CAS  Google Scholar 

  51. Han, I. & Kudlow, J. E. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol. Cell. Biol. 17, 2550–2558 (1997).

    Article  CAS  Google Scholar 

  52. Sumegi, M., Hunyadi-Gulyas, E., Medzihradszky, K. F. & Udvardy, A. 26S proteasome subunits are O-linked N-acetylglucosamine-modified in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 312, 1284–1289 (2003).

    Article  CAS  Google Scholar 

  53. Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).

    Article  CAS  Google Scholar 

  54. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W. & Gong, C. X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc. Natl Acad. Sci. USA 101, 10804–10809 (2004).

    Article  ADS  CAS  Google Scholar 

  55. Griffith, L. S., Mathes, M. & Schmitz, B. Beta-amyloid precursor protein is modified with O-linked N-acetylglucosamine. J. Neurosci. Res. 41, 270–278 (1995).

    Article  CAS  Google Scholar 

  56. Ludemann, N. et al. O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J. Biol. Chem. 280, 31648–31658 (2005).

    Article  Google Scholar 

  57. Zachara, N. E. & Hart, G. W. O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim. Biophys. Acta 1673, 13–28 (2004).

    Article  ADS  CAS  Google Scholar 

  58. Guinez, C., Lemoine, J., Michalski, J. C. & Lefebvre, T. 70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked N-acetylglucosamine. Biochem. Biophys. Res. Commun. 319, 21–26 (2004).

    Article  CAS  Google Scholar 

  59. Fang, B. & Miller, M. W. Use of galactosyltransferase to assess the biological function of O-linked N-acetyl-D-glucosamine: a potential role for O-GlcNAc during cell division. Exp. Cell Res. 263, 243–253 (2001).

    Article  CAS  Google Scholar 

  60. Slawson, C., Shafii, S., Amburgey, J. & Potter, R. Characterization of the O-GlcNAc protein modification in Xenopus laevis oocyte during oogenesis and progesterone-stimulated maturation. Biochim. Biophys. Acta 1573, 121–129 (2002).

    Article  CAS  Google Scholar 

  61. Slawson, C. et al. Perturbations in O-linked β-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem. 280, 32944–32956 (2005).

    Article  CAS  Google Scholar 

  62. Wells, L., Vosseller, K. & Hart, G. W. A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell. Mol. Life Sci. 60, 222–228 (2003).

    Article  CAS  Google Scholar 

  63. Buse, M. G. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab. 290, E1–E8 (2006).

    Article  CAS  Google Scholar 

  64. Vosseller, K., Wells, L., Lane, M. D. & Hart, G. W. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc. Natl Acad. Sci. USA 99, 5313–5318 (2002).

    Article  ADS  CAS  Google Scholar 

  65. Federici, M. et al. Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106, 466–472 (2002).

    Article  CAS  Google Scholar 

  66. McClain, D. A. et al. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc. Natl Acad. Sci. USA 99, 10695–10699 (2002).

    Article  ADS  CAS  Google Scholar 

  67. Marshall, S., Bacote, V. & Traxinger, R. R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712 (1991).

    CAS  PubMed  Google Scholar 

  68. Parker, G., Taylor, R., Jones, D. & McClain, D. Hyperglycemia and inhibition of glycogen synthase in streptozotocin-treated mice: role of O-linked N-acetylglucosamine. J. Biol. Chem. 279, 20636–20642 (2004).

    Article  CAS  Google Scholar 

  69. Lehman, D. M. et al. A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-beta-D glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes 54, 1214–1221 (2005).

    Article  CAS  Google Scholar 

  70. Yki-Jarvinen, H., Virkamaki, A., Daniels, M. C., McClain, D. & Gottschalk, W. K. Insulin and glucosamine infusions increase O-linked N-acetyl-glucosamine in skeletal muscle proteins in vivo. Metabolism 47, 449–455 (1998).

    Article  CAS  Google Scholar 

  71. Liu, K., Paterson, A. J., Chin, E. & Kudlow, J. E. Glucose stimulates protein modification by O-linked GlcNAc in pancreatic β cells: linkage of O-linked GlcNAc to β cell death. Proc. Natl Acad. Sci. USA 97, 2820–2825 (2000).

    Article  ADS  CAS  Google Scholar 

  72. Walgren, J. L., Vincent, T. S., Schey, K. L. & Buse, M. G. High glucose and insulin promote O-GlcNAc modification of proteins, including α-tubulin. Am. J. Physiol. Endocrinol. Metab. 284, E424–E434 (2003).

    Article  CAS  Google Scholar 

  73. Clark, R. J. et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J. Biol. Chem. 278, 44230–44237 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Original work in the author's laboratory is supported by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald W. Hart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hart, G., Housley, M. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007). https://doi.org/10.1038/nature05815

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05815

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing