Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans

Abstract

Reduced food intake as a result of dietary restriction increases the lifespan of a wide variety of metazoans and delays the onset of multiple age-related pathologies. Dietary restriction elicits a genetically programmed response to nutrient availability that cannot be explained by a simple reduction in metabolism or slower growth of the organism. In the nematode worm Caenorhabditis elegans, the transcription factor PHA-4 has an essential role in the embryonic development of the foregut and is orthologous to genes encoding the mammalian family of Foxa transcription factors, Foxa1, Foxa2 and Foxa3. Foxa family members have important roles during development, but also act later in life to regulate glucagon production and glucose homeostasis, particularly in response to fasting. Here we describe a newly discovered, adult-specific function for PHA-4 in the regulation of diet-restriction-mediated longevity in C. elegans. The role of PHA-4 in lifespan determination is specific for dietary restriction, because it is not required for the increased longevity caused by other genetic pathways that regulate ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: smk-1 and pha-4 are required for diet-restriction-mediated longevity.
Figure 2: pha-4 is required during adulthood to regulate longevity in response to dietary restriction.
Figure 3: Regulation and localization of pha-4 in response to dietary restriction.
Figure 4: Increased dosage of pha-4 extends lifespan.
Figure 5: Differential transcriptional regulation of sod s by pha-4 and daf-16 in response to dietary restriction and IIS.

Similar content being viewed by others

References

  1. Clancy, D. J., Gems, D., Hafen, E., Leevers, S. J. & Partridge, L. Dietary restriction in long-lived dwarf flies. Science 296, 319 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Clancy, D. J. et al. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Holzenberger, M. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182–187 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A. C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Tu, M. P., Epstein, D. & Tatar, M. The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homologue chico. Aging Cell 1, 75–80 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. Houthoofd, K., Braeckman, B. P., Johnson, T. E. & Vanfleteren, J. R. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp. Gerontol. 38, 947–954 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 13091–13096 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Henderson, S. T. & Johnson, T. E. daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr. Biol. 11, 1975–1980 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genet. 28, 139–145 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wolff, S. et al. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 124, 1039–1053 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998)

  16. Horner, M. A. et al. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev. 12, 1947–1952 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shih, D. Q., Navas, M. A., Kuwajima, S., Duncan, S. A. & Stoffel, M. Impaired glucose homeostasis and neonatal mortality in hepatocyte nuclear factor 3α-deficient mice. Proc. Natl Acad. Sci. USA 96, 10152–10157 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaestner, K. H., Katz, J., Liu, Y., Drucker, D. J. & Schutz, G. Inactivation of the winged helix transcription factor HNF3α affects glucose homeostasis and islet glucagon gene expression in vivo. Genes Dev. 13, 495–504 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, L., Rubins, N. E., Ahima, R. S., Greenbaum, L. E. & Kaestner, K. H. Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metab. 2, 141–148 (2005)

    Article  PubMed  Google Scholar 

  20. Kaestner, K. H., Hiemisch, H. & Schutz, G. Targeted disruption of the gene encoding hepatocyte nuclear factor 3γ results in reduced transcription of hepatocyte-specific genes. Mol. Cell. Biol. 18, 4245–4251 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen, W., Scearce, L. M., Brestelli, J. E., Sund, N. J. & Kaestner, K. H. Foxa3 (hepatocyte nuclear factor 3γ) is required for the regulation of hepatic GLUT2 expression and the maintenance of glucose homeostasis during a prolonged fast. J. Biol. Chem. 276, 42812–42817 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Gaudet, J. & Mango, S. E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Mango, S. E., Lambie, E. J. & Kimble, J. The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development 120, 3019–3031 (1994)

    CAS  PubMed  Google Scholar 

  24. Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech. Ageing Dev. 6, 413–429 (1977)

    Article  CAS  PubMed  Google Scholar 

  25. Dillin, A. et al. Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33, 40–48 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Azzaria, M., Goszczynski, B., Chung, M. A., Kalb, J. M. & McGhee, J. D. A fork head/HNF-3 homolog expressed in the pharynx and intestine of the Caenorhabditis elegans embryo. Dev. Biol. 178, 289–303 (1996)

    Article  CAS  PubMed  Google Scholar 

  28. Furuyama, T., Nakazawa, T., Nakano, I. & Mori, N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem. J. 349, 629–634 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giglio, M. P., Hunter, T., Bannister, J. V., Bannister, W. H. & Hunter, G. J. The manganese superoxide dismutase gene of Caenorhabditis elegans. Biochem. Mol. Biol. Int. 33, 37–40 (1994)

    CAS  PubMed  Google Scholar 

  30. Hunter, T., Bannister, W. H. & Hunter, G. J. Cloning, expression, and characterization of two manganese superoxide dismutases from Caenorhabditis elegans. J. Biol. Chem. 272, 28652–28659 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki, N., Inokuma, K., Yasuda, K. & Ishii, N. Cloning, sequencing and mapping of a manganese superoxide dismutase gene of the nematode Caenorhabditis elegans. DNA Res. 3, 171–174 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. Honda, Y. & Honda, S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 13, 1385–1393 (1999)

    Article  CAS  PubMed  Google Scholar 

  33. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005)

    Article  CAS  PubMed  Google Scholar 

  34. Giglio, A. M., Hunter, T., Bannister, J. V., Bannister, W. H. & Hunter, G. J. The copper/zinc superoxide dismutase gene of Caenorhabditis elegans. Biochem. Mol. Biol. Int. 33, 41–44 (1994)

    CAS  PubMed  Google Scholar 

  35. Dillin, A., Crawford, D. K. & Kenyon, C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298, 830–834 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Puig, O. & Tjian, R. Transcriptional feedback control of insulin receptor by dFOXO/FOXO1. Genes Dev. 19, 2435–2446 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pierce, S. B. et al. Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev. 15, 672–686 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murphy, C. T. et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277–283 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Li, W., Kennedy, S. G. & Ruvkun, G. daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev. 17, 844–858 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Apfeld, J. & Kenyon, C. Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402, 804–809 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Libina, N., Berman, J. R. & Kenyon, C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115, 489–502 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. Wolkow, C. A., Kimura, K. D., Lee, M. S. & Ruvkun, G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290, 147–150 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  43. McElwee, J., Bubb, K. & Thomas, J. H. Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2, 111–121 (2003)

    Article  CAS  PubMed  Google Scholar 

  44. Tsuchiya, T. et al. Additive regulation of hepatic gene expression by dwarfism and caloric restriction. Physiol. Genomics 17, 307–315 (2004)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  45. Fujii, M., Ishii, N., Joguchi, A., Yasuda, K. & Ayusawa, D. A novel superoxide dismutase gene encoding membrane-bound and extracellular isoforms by alternative splicing in Caenorhabditis elegans. DNA Res. 5, 25–30 (1998)

    Article  CAS  PubMed  Google Scholar 

  46. Larsen, P. L. Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 90, 8905–8909 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hope, I. A. C. elegans: A Practical Approach (ed. Hope, I. A.) 88–90 (Oxford University Press, Oxford, 1999)

    Google Scholar 

  50. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Dillin laboratory for critical comments on this work; M. Montminy and R. Shaw for comments on the manuscript; and S. Mango for reagents and discussion during the course of this work. We thank R. Tsien for use of dTOMATO. This work was supported by grants from the NIH/NIA, The Ellison Medical Foundation and the American Diabetes Association. H.A. thanks the Jane Coffin Childs Foundation for support. A.D. is founder of Proteoguard Pharmaceuticals.

Author Contributions A.D., S.W., H.A. and S.P. conceived the framework of the manuscript. A.D., S.W. and S.P. wrote the paper. A.D. oversaw the entire project. S.W. and H.A. screened all forkhead-related genes for their role in dietary restriction. J.D. performed the isp-1(qm150) experiments. S.P. created all transgenic lines, performed overexpression, localization, BDR and Q-PCR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Dillin.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S6 with Legends and Supplementary Tables S1-S4. (PDF 3297 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panowski, S., Wolff, S., Aguilaniu, H. et al. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447, 550–555 (2007). https://doi.org/10.1038/nature05837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05837

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing