Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age

Abstract

A diminished capacity to maintain tissue homeostasis is a central physiological characteristic of ageing. As stem cells regulate tissue homeostasis, depletion of stem cell reserves and/or diminished stem cell function have been postulated to contribute to ageing1. It has further been suggested that accumulated DNA damage could be a principal mechanism underlying age-dependent stem cell decline2. We have tested these hypotheses by examining haematopoietic stem cell reserves and function with age in mice deficient in several genomic maintenance pathways including nucleotide excision repair3,4, telomere maintenance5,6 and non-homologous end-joining7,8. Here we show that although deficiencies in these pathways did not deplete stem cell reserves with age, stem cell functional capacity was severely affected under conditions of stress, leading to loss of reconstitution and proliferative potential, diminished self-renewal, increased apoptosis and, ultimately, functional exhaustion. Moreover, we provide evidence that endogenous DNA damage accumulates with age in wild-type stem cells. These data are consistent with DNA damage accrual being a physiological mechanism of stem cell ageing that may contribute to the diminished capacity of aged tissues to return to homeostasis after exposure to acute stress or injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stem and progenitor reserves with age in genomic maintenance-deficient mice.
Figure 2: Telomerase-deficiency limits LT-HSC function with age.
Figure 3: NER deficiency limits LT-HSC function with age.
Figure 4: NHEJ deficiency and endogenous damage accumulation in stem cells with age.

Similar content being viewed by others

References

  1. Schlessinger, D. & Van Zant, G. Does functional depletion of stem cells drive aging? Mech. Ageing Dev. 122, 1537–1553 (2001)

    Article  CAS  Google Scholar 

  2. Park, Y. & Gerson, S. L. DNA repair defects in stem cell function and aging. Annu. Rev. Med. 56, 495–508 (2005)

    Article  CAS  Google Scholar 

  3. de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1, 981–990 (1998)

    Article  CAS  Google Scholar 

  4. de Boer, J. et al. Premature aging in mice deficient in DNA repair and transcription. Science 296, 1276–1279 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997)

    Article  CAS  Google Scholar 

  6. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999)

    Article  CAS  Google Scholar 

  7. Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Nussenzweig, A., Sokol, K., Burgman, P., Li, L. & Li, G. C. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc. Natl Acad. Sci. USA 94, 13588–13593 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hematopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000)

    Article  CAS  Google Scholar 

  11. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nature Med. 2, 1011–1016 (1996)

    Article  CAS  Google Scholar 

  12. Bryder, D., Rossi, D. J. & Weissman, I. L. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol. 169, 338–346 (2006)

    Article  CAS  Google Scholar 

  13. Yamazaki, S. et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J. 25, 3515–3523 (2006)

    Article  CAS  Google Scholar 

  14. Passegue, E., Wagers, A. J., Giuriato, S., Anderson, W. C. & Weissman, I. L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599–1611 (2005)

    Article  CAS  Google Scholar 

  15. Ishikawa, K., Ishii, H. & Saito, T. DNA damage-dependent cell cycle checkpoints and genomic stability. DNA Cell Biol. 25, 406–411 (2006)

    Article  CAS  Google Scholar 

  16. Allsopp, R. C., Morin, G. B., DePinho, R., Harley, C. B. & Weissman, I. L. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102, 517–520 (2003)

    Article  CAS  Google Scholar 

  17. Samper, E. et al. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99, 2767–2775 (2002)

    Article  CAS  Google Scholar 

  18. Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet. 39, 99–105 (2007)

    Article  CAS  Google Scholar 

  19. Domen, J., Cheshier, S. H. & Weissman, I. L. The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J. Exp. Med. 191, 253–264 (2000)

    Article  CAS  Google Scholar 

  20. Rogakou, E. P., Pilch, D. R., Orr, A. H., Ivanova, V. S. & Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998)

    Article  CAS  Google Scholar 

  21. Kim, M., Moon, H. B. & Spangrude, G. J. Major age-related changes of mouse hematopoietic stem/progenitor cells. Ann. NY Acad. Sci. 996, 195–208 (2003)

    Article  ADS  Google Scholar 

  22. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005)

    Article  CAS  Google Scholar 

  23. Navarro, S. et al. Hematopoietic dysfunction in a mouse model for Fanconi anemia group D1. Mol. Ther. 14, 525–535 (2006)

    Article  CAS  Google Scholar 

  24. Reese, J. S., Liu, L. & Gerson, S. L. Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 102, 1626–1633 (2003)

    Article  CAS  Google Scholar 

  25. Prasher, J. M. et al. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1-/- mice. EMBO J. 24, 861–871 (2005)

    Article  CAS  Google Scholar 

  26. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Ito, K. et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nature Med. 12, 446–451 (2006)

    Article  CAS  Google Scholar 

  28. Bender, C. F. et al. Cancer predisposition and hematopoietic failure in Rad50S/S mice. Genes Dev. 16, 2237–2251 (2002)

    Article  CAS  Google Scholar 

  29. Morales, M. et al. The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev. 19, 3043–3054 (2005)

    Article  CAS  Google Scholar 

  30. Seita, J. et al. Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc. Natl Acad. Sci. USA 104, 2349–2354 (2007)

    Article  ADS  CAS  Google Scholar 

  31. de Boer, J. et al. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1, 981–990 (1998)

    Article  CAS  Google Scholar 

  32. de Boer, J. et al. Premature ageing in mice deficient in DNA repair and transcription. Science 296, 1276–1279 (2002)

    Article  ADS  CAS  Google Scholar 

  33. Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555 (1996)

    Article  ADS  CAS  Google Scholar 

  34. Nussenzweig, A., Sokol, K., Burgman, P., Li, L. & Li, G. C. Hypersensitivity of Ku80-deficient cell lines and mice to DNA damage: the effects of ionizing radiation on growth, survival, and development. Proc. Natl Acad. Sci. USA 94, 13588–13593 (1997)

    Article  ADS  CAS  Google Scholar 

  35. Difilippantonio, M. J. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999)

    Article  CAS  Google Scholar 

  37. Blasco, M. A. et al. Telomere shortening and tumour formation by mouse cells lacking telomerase RNA. Cell 91, 25–34 (1997)

    Article  CAS  Google Scholar 

  38. Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569–574 (1998)

    Article  ADS  CAS  Google Scholar 

  39. Hathcock, K. S. et al. Haploinsufficiency of mTR results in defects in telomere elongation. Proc. Natl Acad. Sci. USA 99, 3591–3596 (2002)

    Article  ADS  CAS  Google Scholar 

  40. Allsopp, R. C., Cheshier, S. & Weissman, I. L. Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J. Exp. Med. 193, 917–924 (2001)

    Article  CAS  Google Scholar 

  41. Herrera, E. et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 18, 2950–2960 (1999)

    Article  CAS  Google Scholar 

  42. Rossi, D. J. et al. Cell intrinsic alterations underlie haematopoietic stem cell ageing. Proc. Natl Acad. Sci. USA rr. 102, 9194–9199 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Bhattacharya for critical reading of the manuscript. A.N. was supported by NCI’s Center for Cancer Research. D.J.R. was supported by the Damon Runyon Cancer Foundation and the California Institute of Regenerative Medicine. D.B. was supported by a Swedish Medical Research Council scholarship (STINT) and a Cancerfonden grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derrick J. Rossi.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S5 with Legends and additional references. (PDF 1116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, D., Bryder, D., Seita, J. et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007). https://doi.org/10.1038/nature05862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05862

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing