Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA repair is limiting for haematopoietic stem cells during ageing

Abstract

Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of ageing. Here we address this question by taking advantage of the highly specific role of DNA ligase IV in the repair of DNA double-strand breaks by non-homologous end-joining, and by the discovery of a unique mouse strain with a hypomorphic Lig4Y288C mutation. The Lig4Y288C mouse, identified by means of a mutagenesis screening programme, is a mouse model for human LIG4 syndrome, showing immunodeficiency and growth retardation. Diminished DNA double-strand break repair in the Lig4Y288C strain causes a progressive loss of haematopoietic stem cells and bone marrow cellularity during ageing, and severely impairs stem cell function in tissue culture and transplantation. The sensitivity of haematopoietic stem cells to non-homologous end-joining deficiency is therefore a key determinant of their ability to maintain themselves against physiological stress over time and to withstand culture and transplantation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of an ENU-induced missense substitution in LigIV in the tiny mouse strain.
Figure 2: Impact of the Y288C mutation.
Figure 3: Double-strand breaks accumulate in Lig4 Y288C embryonic fibroblasts independently of replication and confer impaired proliferation.
Figure 4: Lig4 Y288C impairs the maintenance of adult haematopoietic stem cells.
Figure 5: Lig4 Y288C impairs the intrinsic function of adult haematopoietic stem cells.

Similar content being viewed by others

References

  1. Weissman, I. L. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100, 157–168 (2000)

    Article  CAS  Google Scholar 

  2. Park, Y. & Gerson, S. L. DNA repair defects in stem cell function and aging. Annu. Rev. Med. 56, 495–508 (2005)

    Article  CAS  Google Scholar 

  3. Wang, Y., Schulte, B. A., LaRue, A. C., Ogawa, M. & Zhou, D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107, 358–366 (2006)

    Article  CAS  Google Scholar 

  4. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001)

    Article  CAS  Google Scholar 

  5. Karanjawala, Z. E., Murphy, N., Hinton, D. R., Hsieh, C. L. & Lieber, M. R. Oxygen metabolism causes chromosome breaks and is associated with the neuronal apoptosis observed in DNA double-strand break repair mutants. Curr. Biol. 12, 397–402 (2002)

    Article  CAS  Google Scholar 

  6. Weterings, E. & van Gent, D. C. The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair (Amst.) 3, 1425–1435 (2004)

    Article  CAS  Google Scholar 

  7. Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev. Mol. Cell Biol. 4, 712–720 (2003)

    Article  CAS  Google Scholar 

  8. Ito, K. et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997–1002 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Sedelnikova, O. A. et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nature Cell Biol. 6, 168–170 (2004)

    Article  CAS  Google Scholar 

  10. Bender, C. F. et al. Cancer predisposition and hematopoietic failure in Rad50(S/S) mice. Genes Dev. 16, 2237–2251 (2002)

    Article  CAS  Google Scholar 

  11. Dumble, M. et al. The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109, 1736–1742 (2006)

    Article  Google Scholar 

  12. Buck, D. et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124, 287–299 (2006)

    Article  CAS  Google Scholar 

  13. Ahnesorg, P., Smith, P. & Jackson, S. P. XLF interacts with the XRCC4–DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 124, 301–313 (2006)

    Article  CAS  Google Scholar 

  14. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004)

    Article  CAS  Google Scholar 

  15. Hsu, H. L., Gilley, D., Blackburn, E. H. & Chen, D. J. Ku is associated with the telomere in mammals. Proc. Natl Acad. Sci. USA 96, 12454–12458 (1999)

    Article  ADS  CAS  Google Scholar 

  16. d’Adda di Fagagna, F. et al. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol. 11, 1192–1196 (2001)

    Article  Google Scholar 

  17. Barnes, D. E., Stamp, G., Rosewell, I., Denzel, A. & Lindahl, T. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr. Biol. 8, 1395–1398 (1998)

    Article  CAS  Google Scholar 

  18. Frank, K. M. et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396, 173–177 (1998)

    Article  ADS  CAS  Google Scholar 

  19. O’Driscoll, M. et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol. Cell 8, 1175–1185 (2001)

    Article  Google Scholar 

  20. Ben-Omran, T. I., Cerosaletti, K., Concannon, P., Weitzman, S. & Nezarati, M. M. A patient with mutations in DNA Ligase IV: clinical features and overlap with Nijmegen breakage syndrome. Am. J. Med. Genet. A. 137, 283–287 (2005)

    Article  Google Scholar 

  21. van der Burg, M. et al. A new type of radiosensitive TBNK severe combined immunodeficiency caused by a LIG4 mutation. J. Clin. Invest. 116, 137–145 (2006)

    Article  CAS  Google Scholar 

  22. Enders, A. et al. A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J. Immunol. 176, 5060–5068 (2006)

    Article  CAS  Google Scholar 

  23. Toita, N. et al. Epstein–Barr virus-associated B-cell lymphoma in a patient with DNA ligase IV (LIG4) syndrome. Am. J. Med. Genet. A 143, 742–745 (2007)

    Article  Google Scholar 

  24. Gruhn, B. et al. Successful bone marrow transplantation in a patient with DNA ligase IV deficiency and bone marrow failure. Orphanet J. Rare Dis. 2, 5 (2007)

    Article  Google Scholar 

  25. Sekiguchi, J. M. & Ferguson, D. O. DNA double-strand break repair: a relentless hunt uncovers new prey. Cell 124, 260–262 (2006)

    Article  CAS  Google Scholar 

  26. Nelms, K. A. & Goodnow, C. C. Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418 (2001)

    Article  CAS  Google Scholar 

  27. Quwailid, M. M. et al. A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm. Genome 15, 585–591 (2004)

    Article  CAS  Google Scholar 

  28. Grawunder, U. et al. Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388, 492–495 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Girard, P. M., Kysela, B., Harer, C. J., Doherty, A. J. & Jeggo, P. A. Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms. Hum. Mol. Genet. 13, 2369–2376 (2004)

    Article  CAS  Google Scholar 

  30. Okada, S. et al. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80, 3044–3050 (1992)

    CAS  Google Scholar 

  31. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The aging of hematopoietic stem cells. Nature Med. 2, 1011–1016 (1996)

    Article  CAS  Google Scholar 

  32. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005)

    Article  ADS  CAS  Google Scholar 

  33. Bhattacharya, D., Rossi, D. J., Bryder, D. & Weissman, I. L. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning. J. Exp. Med. 203, 73–85 (2006)

    Article  CAS  Google Scholar 

  34. Hasty, P. & Vijg, J. Accelerating aging by mouse reverse genetics: a rational approach to understanding longevity. Aging Cell 3, 55–65 (2004)

    Article  CAS  Google Scholar 

  35. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431, 1002–1007 (2004)

    Article  ADS  CAS  Google Scholar 

  37. Orelio, C. & Dzierzak, E. Bcl-2 expression and apoptosis in the regulation of hematopoietic stem cells. Leuk. Lymphoma 48, 16–24 (2007)

    Article  CAS  Google Scholar 

  38. Becker, K. A., Stein, J. L., Lian, J. B., van Wijnen, A. J. & Stein, G. S. Establishment of histone gene regulation and cell cycle checkpoint control in human embryonic stem cells. J. Cell. Physiol. 210, 517–526 (2007)

    Article  CAS  Google Scholar 

  39. Marchetti, C. et al. Identification of a novel motif in DNA ligases exemplified by DNA ligase IV. DNA Repair (Amst.) 5, 788–798 (2006)

    Article  CAS  Google Scholar 

  40. Cabuy, E., Newton, C., Roberts, T., Newbold, R. & Slijepcevic, P. Identification of subpopulations of cells with differing telomere lengths in mouse and human cell lines by flow FISH. Cytometry A 62, 150–161 (2004)

    Article  Google Scholar 

  41. Rodrigues, N. P. et al. Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood 106, 477–484 (2005)

    Article  CAS  Google Scholar 

  42. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Weissman, D. Rossi, P. Papathanasiou, F. Alt, C. Yan, A. Gennery and A. Enders for comments and for exchanging unpublished findings. This work was supported by the Wellcome Trust, the Medical Research Council, the Human Frontiers Science Programme and EU grants. R.J.C. is a Wellcome Trust Senior Clinical Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Penelope A. Jeggo or Richard J. Cornall.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table S1 and Supplementary Figures S1-S3 with Legends. (PDF 667 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nijnik, A., Woodbine, L., Marchetti, C. et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447, 686–690 (2007). https://doi.org/10.1038/nature05875

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05875

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing