Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers

Abstract

Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The TKO model.
Figure 2: FBXW7 alterations are common in human T-ALL and conserved in the murine TKO tumours.
Figure 3: Conservation of PTEN genetic alterations in human and mouse T-ALLs.
Figure 4: Substantial overlap between genomic alterations of murine TKO lymphomas and human tumours of diverse origins.

Similar content being viewed by others

References

  1. Pinkel, D. & Albertson, D. G. Array comparative genomic hybridization and its applications in cancer. Nature Genet. 37 (Suppl) S11–S17 (2005)

    Article  CAS  Google Scholar 

  2. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002)

    Article  CAS  ADS  Google Scholar 

  3. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004)

    Article  CAS  ADS  Google Scholar 

  4. Sweet-Cordero, A. et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nature Genet. 37, 48–55 (2005)

    Article  CAS  Google Scholar 

  5. Hodgson, G. et al. Genome scanning with array CGH delineates regional alterations in mouse islet carcinomas. Nature Genet. 29, 459–464 (2001)

    Article  CAS  Google Scholar 

  6. O'Hagan, R. C. et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell 2, 149–155 (2002)

    Article  CAS  Google Scholar 

  7. Casanovas, O., Hager, J. H., Chun, M. G. & Hanahan, D. Incomplete inhibition of the Rb tumor suppressor pathway in the context of inactivated p53 is sufficient for pancreatic islet tumorigenesis. Oncogene 24, 6597–6604 (2005)

    Article  CAS  Google Scholar 

  8. Bardeesy, N. et al. Both p16Ink4a and the p19Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc. Natl Acad. Sci. USA 103, 5947–5952 (2006)

    Article  CAS  ADS  Google Scholar 

  9. Pelham, R. J. et al. Identification of alterations in DNA copy number in host stromal cells during tumor progression. Proc. Natl Acad. Sci. USA 103, 19848–19853 (2006)

    Article  CAS  ADS  Google Scholar 

  10. Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006)

    Article  CAS  Google Scholar 

  11. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006)

    Article  CAS  Google Scholar 

  12. O'Neil, J. et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 107, 781–785 (2005)

    Article  Google Scholar 

  13. Sweet-Cordero, A. et al. Comparison of gene expression and DNA copy number changes in a murine model of lung cancer. Genes Chromosom. Cancer 45, 338–348 (2006)

    Article  CAS  Google Scholar 

  14. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000)

    Article  CAS  ADS  Google Scholar 

  15. Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002)

    Article  CAS  Google Scholar 

  16. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004)

    Article  CAS  Google Scholar 

  17. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004)

    Article  CAS  Google Scholar 

  18. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005)

    Article  CAS  Google Scholar 

  19. Qi, L., Strong, M. A., Karim, B. O., Huso, D. L. & Greider, C. W. Telomere fusion to chromosome breaks reduces oncogenic translocations and tumour formation. Nature Cell Biol. 7, 706–711 (2005)

    Article  CAS  Google Scholar 

  20. Qi, L. et al. Short telomeres and ataxia-telangiectasia mutated deficiency cooperatively increase telomere dysfunction and suppress tumorigenesis. Cancer Res. 63, 8188–8196 (2003)

    CAS  PubMed  Google Scholar 

  21. Wong, K. K. et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421, 643–648 (2003)

    Article  CAS  ADS  Google Scholar 

  22. Shiloh, Y. & Kastan, M. B. ATM: genome stability, neuronal development, and cancer cross paths. Adv. Cancer Res. 83, 209–254 (2001)

    Article  CAS  Google Scholar 

  23. Liyanage, M. et al. Abnormal rearrangement within the α/δ T-cell receptor locus in lymphomas from Atm-deficient mice. Blood 96, 1940–1946 (2000)

    CAS  PubMed  Google Scholar 

  24. Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet. 28, 155–159 (2001)

    Article  CAS  Google Scholar 

  25. Windle, B., Draper, B. W., Yin, Y. X., O'Gorman, S. & Wahl, G. M. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 5, 160–174 (1991)

    Article  CAS  Google Scholar 

  26. Radtke, F., Wilson, A., Mancini, S. J. & MacDonald, H. R. Notch regulation of lymphocyte development and function. Nature Immunol. 5, 247–253 (2004)

    Article  CAS  Google Scholar 

  27. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991)

    Article  CAS  Google Scholar 

  28. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998)

    Article  CAS  ADS  Google Scholar 

  29. O'Hagan, R. C. et al. Array comparative genome hybridization for tumor classification and gene discovery in mouse models of malignant melanoma. Cancer Res. 63, 5352–5356 (2003)

    CAS  PubMed  Google Scholar 

  30. Shigeno, K. et al. Disease-related potential of mutations in transcriptional cofactors CREB-binding protein and p300 in leukemias. Cancer Lett. 213, 11–20 (2004)

    Article  CAS  Google Scholar 

  31. Winandy, S., Wu, P. & Georgopoulos, K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83, 289–299 (1995)

    Article  CAS  Google Scholar 

  32. Graux, C. et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nature Genet. 36, 1084–1089 (2004)

    Article  CAS  Google Scholar 

  33. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003)

    Article  CAS  Google Scholar 

  34. Mao, J. H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004)

    Article  CAS  ADS  Google Scholar 

  35. Minella, A. C. & Clurman, B. E. Mechanisms of tumor suppression by the SCFFbw7. Cell Cycle 4, 1356–1359 (2005)

    Article  CAS  Google Scholar 

  36. Sansal, I. & Sellers, W. R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004)

    Article  CAS  Google Scholar 

  37. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998)

    Article  CAS  Google Scholar 

  38. Yang, L. et al. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res. 64, 4394–4399 (2004)

    Article  CAS  Google Scholar 

  39. Carrasco, D. R. et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9, 313–325 (2006)

    Article  CAS  Google Scholar 

  40. Tonon, G. et al. High-resolution genomic profiles of human lung cancer. Proc. Natl Acad. Sci. USA 102, 9625–9630 (2005)

    Article  CAS  ADS  Google Scholar 

  41. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004)

    Article  CAS  Google Scholar 

  42. Rajagopalan, H. et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 428, 77–81 (2004)

    Article  CAS  ADS  Google Scholar 

  43. Kemp, Z. et al. CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Res. 65, 11361–11366 (2005)

    Article  CAS  Google Scholar 

  44. Kwak, E. L. et al. Infrequent mutations of Archipelago (hAGO, hCDC4, Fbw7) in primary ovarian cancer. Gynecol. Oncol. 98, 124–128 (2005)

    Article  CAS  Google Scholar 

  45. Sharma, V. M., Draheim, K. M. & Kelliher, M. A. The Notch1/c-Myc Pathway in T cell leukemia. Cell cycle 6, 327–330 (2007)

    Article  Google Scholar 

  46. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999)

    Article  CAS  Google Scholar 

  47. Aguirre, A. J. et al. High-resolution characterization of the pancreatic adenocarcinoma genome. Proc. Natl Acad. Sci. USA 101, 9067–9072 (2004)

    Article  CAS  ADS  Google Scholar 

  48. Mansour, M. R., Linch, D. C., Foroni, L., Goldstone, A. H. & Gale, R. E. High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 20, 537–539 (2006)

    Article  CAS  Google Scholar 

  49. Olshen, A. B., Venkatraman, E. S., Lucito, R. & Wigler, M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004)

    Article  Google Scholar 

  50. Davies, H. et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 65, 7591–7595 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Zhang, A. Yu and K. Marmon for excellent mouse husbandry and care, and C. Greenman and E. Pleasance for helpful discussion on statistical analyses. R.S.M. was supported by the Damon Runyon Cancer Research Foundation. P.J.C. was supported by the Kay Kendall Leukaemia Fund, and B.C. is supported by a grant from GlaxoSmithKline. K.K.W. was supported by an NIH award. M.R.S. and P.A.F. are supported by the Wellcome Trust. L.C. and R.A.D. are supported by NIH grants, LeBow Fund to Cure Myeloma, the Chris Elliot Foundation, and the Center for Applied Cancer Science of the Belfer Institute for Innovative Cancer Science. R.A.D. is an Ellison Foundation for Medical Research Senior Scholar and an American Cancer Society Research Professor.

Author Contributions R.S.M., B.C., P.J.C. and B.F. performed the experiments and contributed equally as first authors. M.R.S., L.C., P.A.F. and R.A.D. supervised experiments and contributed equally as senior authors. R.S.M. and R.A.D. generated and characterized the instability mouse model. B.F. and L.C. conducted the oncogenomic analyses. B.C., P.J.C., M.R.S. and P.A.F. provided the re-sequencing analyses. A.P., J.O., A.G., E.I., I.P., E.L., V.M., S.J., K.M., S.Z., S.E., C.S., G.H., C.B., E.S.M., R.W., O.K., C.N., M.M. and V.D. performed experiments. A.G., L.F., A.K.F., A.H.G., J.M.R. and A.T.L. contributed patient samples and clinical data. K.K.W., J.A. and A.T.L. coordinated experiments. Y.A.W. contributed to the writing of the manuscript.

All microarray data are available at the Gene Expression Array Omnibus website (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE7615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. DePinho.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S6 and Supplementary Tables S1-S7 with Legends. (PDF 1984 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maser, R., Choudhury, B., Campbell, P. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007). https://doi.org/10.1038/nature05886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05886

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing