Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An essential role for a CD36-related receptor in pheromone detection in Drosophila

Abstract

The CD36 family of transmembrane receptors is present across metazoans and has been implicated biochemically in lipid binding and transport1. Several CD36 proteins function in the immune system as scavenger receptors for bacterial pathogens and seem to act as cofactors for Toll-like receptors by facilitating recognition of bacterially derived lipids2,3,4. Here we show that a Drosophila melanogaster CD36 homologue, Sensory neuron membrane protein (SNMP), is expressed in a population of olfactory sensory neurons (OSNs) implicated in pheromone detection. SNMP is essential for the electrophysiological responses of OSNs expressing the receptor OR67d to (Z)-11-octadecenyl acetate (cis-vaccenyl acetate, cVA), a volatile male-specific fatty-acid-derived pheromone that regulates sexual and social aggregation behaviours5,6,7,8. SNMP is also required for the activation of the moth pheromone receptor HR13 by its lipid-derived pheromone ligand (Z)-11-hexadecenal9, but is dispensable for the responses of the conventional odorant receptor OR22a to its short hydrocarbon fruit ester ligands. Finally, we show that SNMP is required for responses of OR67d to cVA when ectopically expressed in OSNs not normally activated by pheromones. Because mammalian CD36 binds fatty acids10, we suggest that SNMP acts in concert with odorant receptors to capture pheromone molecules on the surface of olfactory dendrites. Our work identifies an unanticipated cofactor for odorant receptors that is likely to have a widespread role in insect pheromone detection. Moreover, these results define a unifying model for CD36 function, coupling recognition of lipid-based extracellular ligands to signalling receptors in both pheromonal communication and pathogen recognition through the innate immune system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A comparative genomics screen for olfactory molecules identifies Drosophila SNMP, a CD36-related receptor.
Figure 2: SNMP localizes to sensory cilia of pheromone-sensitive OSNs.
Figure 3: Genetic analysis of Snmp.
Figure 4: SNMP mediates electrophysiological responses to cVA.
Figure 5: SNMP is specifically required, and sufficient, for pheromone detection.

Similar content being viewed by others

References

  1. Ge, Y. & Elghetany, M. T. CD36: a multiligand molecule. Lab. Hematol. 11, 31–37 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Philips, J. A., Rubin, E. J. & Perrimon, N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309, 1251–1253 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Stuart, L. M. et al. Response to Staphylococcus aureus requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. J. Cell Biol. 170, 477–485 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartelt, R. J., Schaner, A. M. & Jackson, L. L. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster . J. Chem. Ecol. 11, 1747–1756 (1985)

    Article  CAS  PubMed  Google Scholar 

  6. Xu, P., Atkinson, R., Jones, D. N. & Smith, D. P. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45, 193–200 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Ejima, A. et al. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr. Biol. 17, 599–605 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurtovic, A., Widmer, A. & Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Grosse-Wilde, E., Gohl, T., Bouche, E., Breer, H. & Krieger, J. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur. J. Neurosci. 25, 2364–2373 (2007)

    Article  PubMed  Google Scholar 

  10. Bonen, A. et al. Regulation of fatty acid transport by fatty acid translocase/CD36. Proc. Nutr. Soc. 63, 245–249 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Benton, R., Sachse, S., Michnick, S. W. & Vosshall, L. B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo . PLoS Biol. 4, e20 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wistrand, M., Kall, L. & Sonnhammer, E. L. A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci. 15, 509–521 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. Nakagawa, T., Sakurai, T., Nishioka, T. & Touhara, K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science 307, 1638–1642 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Neuhaus, E. M. et al. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster . Nature Neurosci. 8, 15–17 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rogers, M. E., Sun, M., Lerner, M. R. & Vogt, R. G. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J. Biol. Chem. 272, 14792–14799 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. Couto, A., Alenius, M. & Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Kaissling, K. E. Peripheral mechanisms of pheromone reception in moths. Chem. Senses 21, 257–268 (1996)

    Article  CAS  PubMed  Google Scholar 

  21. van der Goes van Naters, W. & Carlson, J. R. Receptors and neurons for fly odors in Drosophila . Curr. Biol. 17, 606–612 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gong, W. J. & Golic, K. G. Ends-out, or replacement, gene targeting in Drosophila . Proc. Natl Acad. Sci. USA 100, 2556–2561 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ha, T. S. & Smith, D. P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila . J. Neurosci. 26, 8727–8733 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dobritsa, A. A., van der Goes van Naters, W., Warr, C. G., Steinbrecht, R. A. & Carlson, J. R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. Ishida, Y. & Leal, W. S. Rapid inactivation of a moth pheromone. Proc. Natl Acad. Sci. USA 102, 14075–14079 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laugerette, F. et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Invest. 115, 3177–3184 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zdobnov, E. M. et al. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster . Science 298, 149–159 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000)

    CAS  PubMed  Google Scholar 

  30. Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  32. Rebeiz, M. & Posakony, J. W. GenePalette: a universal software tool for genome sequence visualization and analysis. Dev. Biol. 271, 431–438 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. Kim, M. S., Repp, A. & Smith, D. P. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster . Genetics 150, 711–721 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999)

    Article  CAS  PubMed  Google Scholar 

  36. Kiefer, C., Sumser, E., Wernet, M. F. & Von Lintig, J. A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila . Proc. Natl Acad. Sci. USA 99, 10581–10586 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rong, Y. S. et al. Targeted mutagenesis by homologous recombination in D. melanogaster . Genes Dev. 16, 1568–1581 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jones, W. D., Cayirlioglu, P., Kadow, I. G. & Vosshall, L. B. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila . Nature 445, 86–90 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. de Bruyne, M., Clyne, P. J. & Carlson, J. R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Fenster and S. Katz for expert technical assistance; W. Jones for training in electrophysiology; M. Ditzen for providing spike analysis software; P. Morozov of the Columbia Genome Centre and AMDeC Bioinformatics Core Facility for programing to permit batch retrieval of insect-specific orthologues and expressed sequence tags; E. Zdobnov for providing a D. melanogaster/A. gambiae orthologue data set; P. Howell and M. Q. Benedict of the CDC and MR4 for mosquitoes; D. Smith for reagents; B. Dickson for sharing unpublished fly reagents; S. Piccinotti for graphic design; R. Vogt for discussions; and M. Heiman, K. Lee, S. Martin, K. Scott and members of the Vosshall laboratory for comments on the manuscript. R.B. was supported by an EMBO Long-Term Fellowship and the Helen Hay Whitney Foundation. This work was supported by grants to L.B.V. from the NIH and the McKnight Endowment Fund for Neuroscience.

Author Contributions R.B. and K.S.V. performed the screen for olfactory genes. R.B. carried out all other experiments and analysed the data. R.B. and L.B.V. together designed the experiments, interpreted the results, produced the figures and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie B. Vosshall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures S1-S2 with Legends and Supplementary Table S1 which lists genes identified in the comparative genomics screen. (PDF 16268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benton, R., Vannice, K. & Vosshall, L. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289–293 (2007). https://doi.org/10.1038/nature06328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06328

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing