Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two levels of protection for the B cell genome during somatic hypermutation

Abstract

Somatic hypermutation introduces point mutations into immunoglobulin genes in germinal centre B cells during an immune response. The reaction is initiated by cytosine deamination by the activation-induced deaminase (AID) and completed by error-prone processing of the resulting uracils by mismatch and base excision repair factors1. Somatic hypermutation represents a threat to genome integrity2 and it is not known how the B cell genome is protected from the mutagenic effects of somatic hypermutation nor how often these protective mechanisms fail. Here we show, by extensive sequencing of murine B cell genes, that the genome is protected by two distinct mechanisms: selective targeting of AID and gene-specific, high-fidelity repair of AID-generated uracils. Numerous genes linked to B cell tumorigenesis, including Myc, Pim1, Pax5, Ocab (also called Pou2af1), H2afx, Rhoh and Ebf1, are deaminated by AID but escape acquisition of most mutations through the combined action of mismatch and base excision repair. However, approximately 25% of expressed genes analysed were not fully protected by either mechanism and accumulated mutations in germinal centre B cells. Our results demonstrate that AID acts broadly on the genome, with the ultimate distribution of mutations determined by a balance between high-fidelity and error-prone DNA repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene mutation frequencies in wild-type and Aid -/- B cells.
Figure 2: Mutation frequencies in Msh2 -/- Ung -/- double knockout B cells.
Figure 3: Mutation frequencies in Msh2-deficient or Ung-deficient B cells.

Similar content being viewed by others

References

  1. Di Noia, J. M. & Neuberger, M. S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76, 1–22 (2007)

    Article  CAS  Google Scholar 

  2. Kuppers, R. & Dalla-Favera, R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 20, 5580–5594 (2001)

    Article  CAS  Google Scholar 

  3. Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998)

    Article  CAS  ADS  Google Scholar 

  4. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998)

    Article  CAS  ADS  Google Scholar 

  5. Gordon, M. S., Kanegai, C. M., Doerr, J. R. & Wall, R. Somatic hypermutation of the B cell receptor genes B29 (Ig beta, CD79b) and mb1 (Ig alpha, CD79a). Proc. Natl Acad. Sci. USA 100, 4126–4131 (2003)

    Article  CAS  ADS  Google Scholar 

  6. Muschen, M. et al. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J. Exp. Med. 192, 1833–1839 (2000)

    Article  CAS  Google Scholar 

  7. Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001)

    Article  CAS  ADS  Google Scholar 

  8. Parsa, J. Y. et al. AID mutates a non-immunoglobulin transgene independent of chromosomal position. Mol. Immunol. 44, 567–575 (2007)

    Article  CAS  Google Scholar 

  9. Wang, C. L., Harper, R. A. & Wabl, M. Genome-wide somatic hypermutation. Proc. Natl Acad. Sci. USA 101, 7352–7356 (2004)

    Article  CAS  ADS  Google Scholar 

  10. Longerich, S., Basu, U., Alt, F. & Storb, U. AID in somatic hypermutation and class switch recombination. Curr. Opin. Immunol. 18, 164–174 (2006)

    Article  CAS  Google Scholar 

  11. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002)

    Article  CAS  ADS  Google Scholar 

  12. Shen, H. M., Michael, N., Kim, N. & Storb, U. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int. Immunol. 12, 1085–1093 (2000)

    Article  CAS  Google Scholar 

  13. Rada, C., Di Noia, J. M. & Neuberger, M. S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004)

    Article  CAS  Google Scholar 

  14. Shen, H. M., Tanaka, A., Bozek, G., Nicolae, D. & Storb, U. Somatic hypermutation and class switch recombination in Msh6-/-Ung-/- double-knockout mice. J. Immunol. 177, 5386–5392 (2006)

    Article  CAS  Google Scholar 

  15. Xue, K., Rada, C. & Neuberger, M. S. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2-/-ung-/- mice. J. Exp. Med. 203, 2085–2094 (2006)

    Article  CAS  Google Scholar 

  16. Michael, N. et al. The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription. Immunity 19, 235–242 (2003)

    Article  CAS  Google Scholar 

  17. Odegard, V. H. & Schatz, D. G. Targeting of somatic hypermutation. Nature Rev. Immunol. 6, 573–583 (2006)

    Article  CAS  Google Scholar 

  18. Duquette, M. L., Huber, M. D. & Maizels, N. G-rich proto-oncogenes are targeted for genomic instability in B-cell lymphomas. Cancer Res. 67, 2586–2594 (2007)

    Article  CAS  Google Scholar 

  19. Franco, S. et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol. Cell 21, 201–214 (2006)

    Article  CAS  Google Scholar 

  20. Ramiro, A. R. et al. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440, 105–109 (2006)

    Article  CAS  ADS  Google Scholar 

  21. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446, 758–764 (2007)

    Article  CAS  ADS  Google Scholar 

  22. Janz, S. Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst.) 5, 1213–1224 (2006)

    Article  CAS  Google Scholar 

  23. Poltoratsky, V., Prasad, R., Horton, J. K. & Wilson, S. H. Down-regulation of DNA polymerase beta accompanies somatic hypermutation in human BL2 cell lines. DNA Repair (Amst.) 6, 244–253 (2007)

    Article  CAS  Google Scholar 

  24. Reynaud, C. A., Aoufouchi, S., Faili, A. & Weill, J. C. What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nature Immunol. 4, 631–638 (2003)

    Article  CAS  Google Scholar 

  25. Bindra, R. S. & Glazer, P. M. Co-repression of mismatch repair gene expression by hypoxia in cancer cells: Role of the Myc/Max network. Cancer Lett. 252, 93–103 (2007)

    Article  CAS  Google Scholar 

  26. Rosenberg, B. R. & Papavasiliou, F. N. Beyond SHM and CSR: AID and related cytidine deaminases in the host response to viral infection. Adv. Immunol. 94, 215–244 (2007)

    Article  CAS  Google Scholar 

  27. Epeldegui, M., Hung, Y. P., McQuay, A., Ambinder, R. F. & Martinez-Maza, O. Infection of human B cells with Epstein-Barr virus results in the expression of somatic hypermutation-inducing molecules and in the accrual of oncogene mutations. Mol. Immunol. 44, 934–942 (2007)

    Article  CAS  Google Scholar 

  28. Machida, K. et al. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl Acad. Sci. USA 101, 4262–4267 (2004)

    Article  CAS  ADS  Google Scholar 

  29. Matsumoto, Y. et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nature Med. 13, 470–476 (2007)

    Article  CAS  Google Scholar 

  30. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  31. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000)

    Article  CAS  Google Scholar 

  32. Reitmair, A. H. et al. MSH2 deficient mice are viable and susceptible to lymphoid tumours. Nature Genet. 11, 64–70 (1995)

    Article  CAS  Google Scholar 

  33. Nilsen, H. et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 5, 1059–1065 (2000)

    Article  CAS  Google Scholar 

  34. Yu, D. et al. Axon growth and guidance genes identify T-dependent germinal centre B cells. Immunol. Cell Biol. 86, 3–14 (2008)

    Article  CAS  Google Scholar 

  35. Klein, U. et al. Transcriptional analysis of the B cell germinal center reaction. Proc. Natl Acad. Sci. USA 100, 2639–2644 (2003)

    Article  CAS  ADS  Google Scholar 

  36. Alizadeh, A. et al. The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb. Symp. Quant. Biol. 64, 71–78 (1999)

    Article  CAS  Google Scholar 

  37. Suzuki, Y., Yamashita, R., Nakai, K. & Sugano, S. DBTSS: DataBase of human transcriptional start sites and full-length cDNAs. Nucleic Acids Res. 30, 328–331 (2002)

    Article  CAS  Google Scholar 

  38. Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer 4, 177–183 (2004)

    Article  CAS  Google Scholar 

  39. Auer, R. L. et al. Identification of a potential role for POU2AF1 and BTG4 in the deletion of 11q23 in chronic lymphocytic leukemia. Genes Chromosom. Cancer 43, 1–10 (2005)

    Article  CAS  Google Scholar 

  40. Neuberger, M. S. et al. Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunol. Rev. 162, 107–116 (1998)

    Article  CAS  Google Scholar 

  41. Huang, X. On global sequence alignment. Comput. Appl. Biosci. 10, 227–235 (1994)

    CAS  PubMed  Google Scholar 

  42. Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516 (2000)

    Article  CAS  ADS  Google Scholar 

  43. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998)

    Article  CAS  Google Scholar 

  44. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998)

    Article  CAS  Google Scholar 

  45. Goossens, T., Klein, U. & Kuppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl Acad. Sci. USA 95, 2463–2468 (1998)

    Article  CAS  ADS  Google Scholar 

  46. Karolchik, D. et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 32, D493–D496 (2004)

    Article  CAS  Google Scholar 

  47. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002)

    Article  CAS  Google Scholar 

  48. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Rada and M. Neuberger for providing initial samples of DNA from double knockout mice and for comments on the manuscript; L. Staudt, M. Tomayko and M. Shlomchik for unpublished microarray data; S. Fugmann for comments on the manuscript; S. Unniraman for numerous ideas and comments; and D. Tuck for advice on the bioinformatic analysis. We acknowledge the contributions of the Broad Sequencing Platform. This work was supported by a fellowship from the Anna Fuller Foundation (M.L.) and by the Howard Hughes Medical Institute.

Author Contributions M.L. and D.G.S. designed the experiments and M.L. generated all of the sequencing and expression data. M.L., J.L.D. and S.H.K. performed data and statistical analyses and created the figures. D.J.R., J.L.D. and S.H.K. wrote software for sequence analyses. C.G.V. and C.C.G. provided microarray expression data. D.G.S. wrote the paper. All authors commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Schatz.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-8 and Supplementary Tables 1-2 with Legends. (PDF 1341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Duke, J., Richter, D. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008). https://doi.org/10.1038/nature06547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06547

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing